Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1419

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,0,0,1,1,3,0,0,1,1,1,1,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1419', '7.35548']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+40t^5+38t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1419']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 384*K1**4*K2 - 3840*K1**4 + 32*K1**3*K2*K3 - 448*K1**3*K3 - 1664*K1**2*K2**2 - 32*K1**2*K2*K4 + 7216*K1**2*K2 - 160*K1**2*K3**2 - 3372*K1**2 + 2560*K1*K2*K3 + 200*K1*K3*K4 - 128*K2**4 + 112*K2**2*K4 - 2872*K2**2 - 812*K3**2 - 80*K4**2 + 2966
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1419']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20019', 'vk6.20063', 'vk6.21289', 'vk6.21343', 'vk6.27070', 'vk6.27124', 'vk6.28773', 'vk6.28811', 'vk6.38459', 'vk6.38529', 'vk6.40646', 'vk6.40724', 'vk6.45343', 'vk6.45425', 'vk6.47110', 'vk6.47165', 'vk6.56834', 'vk6.56884', 'vk6.57966', 'vk6.58020', 'vk6.61352', 'vk6.61410', 'vk6.62526', 'vk6.62565', 'vk6.66546', 'vk6.66592', 'vk6.67333', 'vk6.67381', 'vk6.69192', 'vk6.69240', 'vk6.69941', 'vk6.69979']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U2O5U6U3O6U4U5
R3 orbit {'O1O2O3U1O4U2O5U6U3O6U4U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6U1U6O4U2O5U3
Gauss code of K* O1O2U1O3O4U5U6U2O5U3O6U4
Gauss code of -K* O1O2U3O4O3U1O5U2O6U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 2 -1],[ 2 0 1 2 2 1 1],[ 1 -1 0 1 2 2 0],[-1 -2 -1 0 0 1 -1],[-1 -2 -2 0 0 1 -1],[-2 -1 -2 -1 -1 0 -2],[ 1 -1 0 1 1 2 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -2 -2 -1],[-1 1 0 0 -1 -1 -2],[-1 1 0 0 -1 -2 -2],[ 1 2 1 1 0 0 -1],[ 1 2 1 2 0 0 -1],[ 2 1 2 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,1,1,2,2,1,0,1,1,2,1,2,2,0,1,1]
Phi over symmetry [-2,-1,-1,1,1,2,0,0,1,1,3,0,0,1,1,1,1,1,0,0,0]
Phi of -K [-2,-1,-1,1,1,2,0,0,1,1,3,0,0,1,1,1,1,1,0,0,0]
Phi of K* [-2,-1,-1,1,1,2,0,0,1,1,3,0,0,1,1,1,1,1,0,0,0]
Phi of -K* [-2,-1,-1,1,1,2,1,1,2,2,1,0,1,1,2,1,2,2,0,1,1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+28t^4+24t^2+4
Outer characteristic polynomial t^7+40t^5+38t^3+8t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**6 + 384*K1**4*K2 - 3840*K1**4 + 32*K1**3*K2*K3 - 448*K1**3*K3 - 1664*K1**2*K2**2 - 32*K1**2*K2*K4 + 7216*K1**2*K2 - 160*K1**2*K3**2 - 3372*K1**2 + 2560*K1*K2*K3 + 200*K1*K3*K4 - 128*K2**4 + 112*K2**2*K4 - 2872*K2**2 - 812*K3**2 - 80*K4**2 + 2966
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}]]
If K is slice True
Contact