Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1415

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,2,2,-1,0,0,0,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1415']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+17t^5+27t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1415']
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 752*K1**4 + 32*K1**3*K2*K3 - 1824*K1**2*K2**2 - 64*K1**2*K2*K4 + 3128*K1**2*K2 - 80*K1**2*K3**2 - 2176*K1**2 - 32*K1*K2**2*K3 + 2152*K1*K2*K3 + 168*K1*K3*K4 - 152*K2**4 + 216*K2**2*K4 - 1600*K2**2 - 648*K3**2 - 114*K4**2 + 1648
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1415']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16504', 'vk6.16595', 'vk6.18103', 'vk6.18439', 'vk6.22935', 'vk6.23030', 'vk6.24550', 'vk6.24967', 'vk6.34906', 'vk6.35011', 'vk6.36693', 'vk6.37115', 'vk6.42473', 'vk6.42584', 'vk6.43969', 'vk6.44284', 'vk6.54731', 'vk6.54826', 'vk6.55915', 'vk6.56203', 'vk6.59195', 'vk6.59258', 'vk6.60441', 'vk6.60798', 'vk6.64745', 'vk6.64800', 'vk6.65561', 'vk6.65871', 'vk6.68039', 'vk6.68102', 'vk6.68639', 'vk6.68852', 'vk6.73716', 'vk6.73835', 'vk6.78311', 'vk6.78495', 'vk6.78632', 'vk6.78827', 'vk6.85152', 'vk6.89422']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U3O6U1O4U6U5U2
R3 orbit {'O1O2O3U4U2O5O6U1O4U6U3U5', 'O1O2O3U4O5U3O6U1O4U6U5U2'}
R3 orbit length 2
Gauss code of -K O1O2O3U2U4U5O6U3O5U1O4U6
Gauss code of K* O1O2O3U4U3U5O6U2O5U1O4U6
Gauss code of -K* O1O2O3U4O5U3O6U2O4U6U1U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 0 1 0],[ 2 0 2 0 1 2 0],[-1 -2 0 0 0 0 -1],[ 0 0 0 0 0 0 -1],[ 0 -1 0 0 0 0 0],[-1 -2 0 0 0 0 0],[ 0 0 1 1 0 0 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 0 0 0 0 -2],[-1 0 0 0 0 -1 -2],[ 0 0 0 0 0 0 -1],[ 0 0 0 0 0 -1 0],[ 0 0 1 0 1 0 0],[ 2 2 2 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,0,0,0,0,2,0,0,1,2,0,0,1,1,0,0]
Phi over symmetry [-2,0,0,0,1,1,0,0,1,2,2,-1,0,0,0,0,0,1,0,0,0]
Phi of -K [-2,0,0,0,1,1,1,2,2,1,1,0,0,1,1,-1,0,1,1,1,0]
Phi of K* [-1,-1,0,0,0,2,0,0,1,1,1,1,1,1,1,0,1,2,0,1,2]
Phi of -K* [-2,0,0,0,1,1,0,0,1,2,2,-1,0,0,0,0,0,1,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial z^2+14z+25
Enhanced Jones-Krushkal polynomial w^3z^2+14w^2z+25w
Inner characteristic polynomial t^6+11t^4+14t^2
Outer characteristic polynomial t^7+17t^5+27t^3+3t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial 96*K1**4*K2 - 752*K1**4 + 32*K1**3*K2*K3 - 1824*K1**2*K2**2 - 64*K1**2*K2*K4 + 3128*K1**2*K2 - 80*K1**2*K3**2 - 2176*K1**2 - 32*K1*K2**2*K3 + 2152*K1*K2*K3 + 168*K1*K3*K4 - 152*K2**4 + 216*K2**2*K4 - 1600*K2**2 - 648*K3**2 - 114*K4**2 + 1648
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact