Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1411

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,1,2,1,2,1,1,1,2,0,1,2,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1411', '7.35252']
Arrow polynomial of the knot is: -12*K1**2 + 6*K2 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.612', '6.1246', '6.1402', '6.1410', '6.1411', '6.1468', '6.1617', '6.1666', '6.1667', '6.1815', '6.1904', '6.1994', '6.1995', '6.1996', '6.2001', '6.2014', '6.2015', '6.2016', '6.2017', '6.2020', '6.2022']
Outer characteristic polynomial of the knot is: t^7+25t^5+30t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1411']
2-strand cable arrow polynomial of the knot is: 224*K1**4*K2 - 2528*K1**4 + 224*K1**3*K2*K3 - 608*K1**3*K3 + 32*K1**2*K2**3 - 3312*K1**2*K2**2 - 192*K1**2*K2*K4 + 7888*K1**2*K2 - 352*K1**2*K3**2 - 5060*K1**2 - 384*K1*K2**2*K3 + 5056*K1*K2*K3 + 624*K1*K3*K4 - 192*K2**4 + 384*K2**2*K4 - 3784*K2**2 - 1612*K3**2 - 256*K4**2 + 3846
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1411']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73302', 'vk6.73310', 'vk6.73443', 'vk6.73451', 'vk6.74080', 'vk6.74096', 'vk6.74651', 'vk6.74667', 'vk6.75443', 'vk6.75451', 'vk6.76114', 'vk6.76130', 'vk6.78183', 'vk6.78191', 'vk6.78413', 'vk6.78421', 'vk6.79082', 'vk6.79098', 'vk6.80004', 'vk6.80012', 'vk6.80155', 'vk6.80163', 'vk6.80586', 'vk6.80602', 'vk6.83798', 'vk6.83800', 'vk6.85115', 'vk6.85119', 'vk6.86609', 'vk6.86613', 'vk6.87390', 'vk6.87398']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U1O6U2O4U6U5U3
R3 orbit {'O1O2O3U4O5U1O6U2O4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U5O6U2O5U3O4U6
Gauss code of K* O1O2O3U4U5U3O6U2O4U1O5U6
Gauss code of -K* O1O2O3U4O5U3O6U2O4U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 0 1 0],[ 2 0 1 2 1 1 0],[ 1 -1 0 2 1 1 0],[-2 -2 -2 0 0 -1 -1],[ 0 -1 -1 0 0 0 0],[-1 -1 -1 1 0 0 0],[ 0 0 0 1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 -2],[-1 1 0 0 0 -1 -1],[ 0 0 0 0 0 -1 -1],[ 0 1 0 0 0 0 0],[ 1 2 1 1 0 0 -1],[ 2 2 1 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,0,1,2,2,0,0,1,1,0,1,1,0,0,1]
Phi over symmetry [-2,-1,0,0,1,2,0,1,2,1,2,1,1,1,2,0,1,2,0,1,0]
Phi of -K [-2,-1,0,0,1,2,0,1,2,2,2,0,1,1,1,0,1,2,1,1,0]
Phi of K* [-2,-1,0,0,1,2,0,1,2,1,2,1,1,1,2,0,1,2,0,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,0,1,1,2,0,1,1,2,0,0,1,0,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+15t^4+8t^2
Outer characteristic polynomial t^7+25t^5+30t^3+4t
Flat arrow polynomial -12*K1**2 + 6*K2 + 7
2-strand cable arrow polynomial 224*K1**4*K2 - 2528*K1**4 + 224*K1**3*K2*K3 - 608*K1**3*K3 + 32*K1**2*K2**3 - 3312*K1**2*K2**2 - 192*K1**2*K2*K4 + 7888*K1**2*K2 - 352*K1**2*K3**2 - 5060*K1**2 - 384*K1*K2**2*K3 + 5056*K1*K2*K3 + 624*K1*K3*K4 - 192*K2**4 + 384*K2**2*K4 - 3784*K2**2 - 1612*K3**2 - 256*K4**2 + 3846
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact