Min(phi) over symmetries of the knot is: [-5,-2,-2,2,3,4,1,2,3,5,4,0,1,3,2,2,4,3,1,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.14'] |
Arrow polynomial of the knot is: 4*K1*K2**2 - 4*K1*K2 - 2*K1*K3 - 2*K1*K4 + K2 + 2*K3 + K4 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.14'] |
Outer characteristic polynomial of the knot is: t^7+163t^5+236t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.14'] |
2-strand cable arrow polynomial of the knot is: 96*K1**3*K2*K3 - 96*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 864*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 256*K1**2*K2*K4 + 1888*K1**2*K2 - 1184*K1**2*K3**2 - 96*K1**2*K3*K5 - 64*K1**2*K4**2 - 2716*K1**2 + 224*K1*K2**3*K3 + 1152*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 - 1344*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 4376*K1*K2*K3 - 128*K1*K2*K4*K5 + 2232*K1*K3*K4 + 480*K1*K4*K5 + 40*K1*K5*K6 + 8*K1*K6*K7 + 8*K1*K7*K8 - 64*K2**4 + 64*K2**3*K3*K5 - 1648*K2**2*K3**2 + 32*K2**2*K3*K4*K7 - 32*K2**2*K3*K7 - 32*K2**2*K4**4 + 64*K2**2*K4**3 + 32*K2**2*K4**2*K8 - 944*K2**2*K4**2 - 32*K2**2*K4*K8 + 1736*K2**2*K4 - 128*K2**2*K5**2 - 8*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 2608*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1592*K2*K3*K5 - 32*K2*K4**2*K6 + 376*K2*K4*K6 + 72*K2*K5*K7 + 24*K2*K6*K8 + 8*K2*K7*K9 - 2032*K3**2 + 16*K3*K4*K7 - 16*K4**4 + 24*K4**2*K8 - 1170*K4**2 - 388*K5**2 - 48*K6**2 - 32*K7**2 - 14*K8**2 + 2718 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.14'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81845', 'vk6.81891', 'vk6.82069', 'vk6.82079', 'vk6.82564', 'vk6.82607', 'vk6.82778', 'vk6.82783', 'vk6.82830', 'vk6.82844', 'vk6.82947', 'vk6.83059', 'vk6.83065', 'vk6.83275', 'vk6.83320', 'vk6.83358', 'vk6.83522', 'vk6.84545', 'vk6.84642', 'vk6.84919', 'vk6.84957', 'vk6.85829', 'vk6.86106', 'vk6.86120', 'vk6.86156', 'vk6.86835', 'vk6.88458', 'vk6.88896', 'vk6.89028', 'vk6.89701', 'vk6.89922', 'vk6.90020'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5O6U1U3U2U5U6U4 |
R3 orbit | {'O1O2O3O4O5O6U1U3U2U5U6U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5O6U3U1U2U5U4U6 |
Gauss code of K* | O1O2O3O4O5O6U1U3U2U6U4U5 |
Gauss code of -K* | O1O2O3O4O5O6U2U3U1U5U4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -5 -2 -2 3 2 4],[ 5 0 2 1 5 3 4],[ 2 -2 0 0 4 2 3],[ 2 -1 0 0 3 1 2],[-3 -5 -4 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-4 -4 -3 -2 -1 -1 0]] |
Primitive based matrix | [[ 0 4 3 2 -2 -2 -5],[-4 0 -1 -1 -2 -3 -4],[-3 1 0 -1 -3 -4 -5],[-2 1 1 0 -1 -2 -3],[ 2 2 3 1 0 0 -1],[ 2 3 4 2 0 0 -2],[ 5 4 5 3 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-4,-3,-2,2,2,5,1,1,2,3,4,1,3,4,5,1,2,3,0,1,2] |
Phi over symmetry | [-5,-2,-2,2,3,4,1,2,3,5,4,0,1,3,2,2,4,3,1,1,1] |
Phi of -K | [-5,-2,-2,2,3,4,1,2,4,3,5,0,2,1,3,3,2,4,0,1,0] |
Phi of K* | [-4,-3,-2,2,2,5,0,1,3,4,5,0,1,2,3,2,3,4,0,1,2] |
Phi of -K* | [-5,-2,-2,2,3,4,1,2,3,5,4,0,1,3,2,2,4,3,1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | t^5-t^4-t^3+t^2 |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+6w^3z^2-6w^3z+23w^2z+19w |
Inner characteristic polynomial | t^6+101t^4+45t^2+1 |
Outer characteristic polynomial | t^7+163t^5+236t^3+8t |
Flat arrow polynomial | 4*K1*K2**2 - 4*K1*K2 - 2*K1*K3 - 2*K1*K4 + K2 + 2*K3 + K4 + 1 |
2-strand cable arrow polynomial | 96*K1**3*K2*K3 - 96*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 864*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 256*K1**2*K2*K4 + 1888*K1**2*K2 - 1184*K1**2*K3**2 - 96*K1**2*K3*K5 - 64*K1**2*K4**2 - 2716*K1**2 + 224*K1*K2**3*K3 + 1152*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 - 1344*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 4376*K1*K2*K3 - 128*K1*K2*K4*K5 + 2232*K1*K3*K4 + 480*K1*K4*K5 + 40*K1*K5*K6 + 8*K1*K6*K7 + 8*K1*K7*K8 - 64*K2**4 + 64*K2**3*K3*K5 - 1648*K2**2*K3**2 + 32*K2**2*K3*K4*K7 - 32*K2**2*K3*K7 - 32*K2**2*K4**4 + 64*K2**2*K4**3 + 32*K2**2*K4**2*K8 - 944*K2**2*K4**2 - 32*K2**2*K4*K8 + 1736*K2**2*K4 - 128*K2**2*K5**2 - 8*K2**2*K6**2 - 32*K2**2*K7**2 - 8*K2**2*K8**2 - 2608*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1592*K2*K3*K5 - 32*K2*K4**2*K6 + 376*K2*K4*K6 + 72*K2*K5*K7 + 24*K2*K6*K8 + 8*K2*K7*K9 - 2032*K3**2 + 16*K3*K4*K7 - 16*K4**4 + 24*K4**2*K8 - 1170*K4**2 - 388*K5**2 - 48*K6**2 - 32*K7**2 - 14*K8**2 + 2718 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]] |
If K is slice | False |