Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1399

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,0,2,-1,-1,1,0,-1,1,0,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1399']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^7+19t^5+49t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1399']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 1632*K1**4*K2 - 4960*K1**4 + 192*K1**3*K2*K3 - 1408*K1**3*K3 - 4144*K1**2*K2**2 - 64*K1**2*K2*K4 + 10576*K1**2*K2 - 288*K1**2*K3**2 - 5692*K1**2 - 320*K1*K2**2*K3 + 5904*K1*K2*K3 + 408*K1*K3*K4 - 104*K2**4 + 320*K2**2*K4 - 4704*K2**2 - 1772*K3**2 - 190*K4**2 + 4676
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1399']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3556', 'vk6.3575', 'vk6.3605', 'vk6.3802', 'vk6.3828', 'vk6.3833', 'vk6.3859', 'vk6.6972', 'vk6.6994', 'vk6.7003', 'vk6.7025', 'vk6.7194', 'vk6.7212', 'vk6.7225', 'vk6.15341', 'vk6.15354', 'vk6.15466', 'vk6.15481', 'vk6.33978', 'vk6.34022', 'vk6.34041', 'vk6.34433', 'vk6.48215', 'vk6.48229', 'vk6.48376', 'vk6.49957', 'vk6.49977', 'vk6.49983', 'vk6.53990', 'vk6.53999', 'vk6.54044', 'vk6.54490']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3O5U4O6U5U6U2
R3 orbit {'O1O2O3U1O4U3O5U4O6U5U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U5O4U6O5U1O6U3
Gauss code of K* O1O2O3U4U3U5O4U6O5U1O6U2
Gauss code of -K* O1O2O3U2O4U3O5U4O6U5U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 0 0 1],[ 2 0 2 1 1 0 0],[-1 -2 0 -1 0 0 1],[ 0 -1 1 0 1 1 0],[ 0 -1 0 -1 0 1 1],[ 0 0 0 -1 -1 0 1],[-1 0 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 0 0 -1 -2],[-1 -1 0 -1 -1 0 0],[ 0 0 1 0 1 -1 -1],[ 0 0 1 -1 0 -1 0],[ 0 1 0 1 1 0 -1],[ 2 2 0 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,0,0,1,2,1,1,0,0,-1,1,1,1,0,1]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,0,2,-1,-1,1,0,-1,1,0,0,1,-1]
Phi of -K [-2,0,0,0,1,1,1,1,2,1,3,-1,-1,0,1,-1,1,0,1,0,-1]
Phi of K* [-1,-1,0,0,0,2,-1,0,0,1,3,1,1,0,1,-1,-1,2,-1,1,1]
Phi of -K* [-2,0,0,0,1,1,0,1,1,0,2,-1,-1,1,0,-1,1,0,0,1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 21z+43
Enhanced Jones-Krushkal polynomial 21w^2z+43w
Inner characteristic polynomial t^6+13t^4+20t^2+1
Outer characteristic polynomial t^7+19t^5+49t^3+8t
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -64*K1**4*K2**2 + 1632*K1**4*K2 - 4960*K1**4 + 192*K1**3*K2*K3 - 1408*K1**3*K3 - 4144*K1**2*K2**2 - 64*K1**2*K2*K4 + 10576*K1**2*K2 - 288*K1**2*K3**2 - 5692*K1**2 - 320*K1*K2**2*K3 + 5904*K1*K2*K3 + 408*K1*K3*K4 - 104*K2**4 + 320*K2**2*K4 - 4704*K2**2 - 1772*K3**2 - 190*K4**2 + 4676
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]]
If K is slice False
Contact