Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1396

Min(phi) over symmetries of the knot is: [-2,-1,1,2,-1,1,4,-1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1396', '7.35320']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^5+35t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1396']
2-strand cable arrow polynomial of the knot is: 192*K1**4*K2 - 1440*K1**4 + 64*K1**2*K2**3 - 1120*K1**2*K2**2 + 3632*K1**2*K2 - 32*K1**2*K3**2 - 2168*K1**2 + 1168*K1*K2*K3 + 64*K1*K3*K4 - 96*K2**4 + 48*K2**2*K4 - 1552*K2**2 - 360*K3**2 - 32*K4**2 + 1630
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1396']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72416', 'vk6.72432', 'vk6.72467', 'vk6.72487', 'vk6.72830', 'vk6.72850', 'vk6.72893', 'vk6.74467', 'vk6.74473', 'vk6.75078', 'vk6.76969', 'vk6.77776', 'vk6.77971', 'vk6.79470', 'vk6.79472', 'vk6.79925', 'vk6.79931', 'vk6.80939', 'vk6.87236', 'vk6.89369']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4U3O5U2O6U5U4U6
R3 orbit {'O1O2O3U1O4U3O5U2O6U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O4U2O6U1O5U3
Gauss code of K* O1O2O3U4U5U6O4U2O6U1O5U3
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 1 0 2],[ 2 0 2 1 2 1 0],[ 1 -2 0 0 3 1 2],[ 0 -1 0 0 1 0 1],[-1 -2 -3 -1 0 0 2],[ 0 -1 -1 0 0 0 1],[-2 0 -2 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 1 -1 -2],[-2 0 -2 -2 0],[-1 2 0 -3 -2],[ 1 2 3 0 -2],[ 2 0 2 2 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,-1,1,2,2,2,0,3,2,2]
Phi over symmetry [-2,-1,1,2,-1,1,4,-1,1,-1]
Phi of -K [-2,-1,1,2,-1,1,4,-1,1,-1]
Phi of K* [-2,-1,1,2,-1,1,4,-1,1,-1]
Phi of -K* [-2,-1,1,2,2,2,0,3,2,2]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^4+25t^2
Outer characteristic polynomial t^5+35t^3+8t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial 192*K1**4*K2 - 1440*K1**4 + 64*K1**2*K2**3 - 1120*K1**2*K2**2 + 3632*K1**2*K2 - 32*K1**2*K3**2 - 2168*K1**2 + 1168*K1*K2*K3 + 64*K1*K3*K4 - 96*K2**4 + 48*K2**2*K4 - 1552*K2**2 - 360*K3**2 - 32*K4**2 + 1630
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice True
Contact