Gauss code |
O1O2O3O4O5O6U4U6U5U2U1U3 |
R3 orbit |
{'O1O2O3O4O5O6U4U6U5U2U1U3'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3O4O5O6U5U4U6U1U3U2 |
Gauss code of -K* |
O1O2O3O4O5O6U5U4U6U1U3U2 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 2 -2 1 1],[ 1 0 0 2 -2 1 1],[ 1 0 0 1 -2 1 1],[-2 -2 -1 0 -2 1 1],[ 2 2 2 2 0 2 1],[-1 -1 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 1 1 -1 -2 -2],[-1 -1 0 0 -1 -1 -1],[-1 -1 0 0 -1 -1 -2],[ 1 1 1 1 0 0 -2],[ 1 2 1 1 0 0 -2],[ 2 2 1 2 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,-1,-1,1,2,2,0,1,1,1,1,1,2,0,2,2] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,-1,1,2,2,0,1,1,1,1,1,2,0,2,2] |
Phi of -K |
[-2,-1,-1,1,1,2,-1,-1,1,2,2,0,1,1,1,1,1,2,0,2,2] |
Phi of K* |
[-2,-1,-1,1,1,2,2,2,1,2,2,0,1,1,1,1,1,2,0,-1,-1] |
Phi of -K* |
[-2,-1,-1,1,1,2,2,2,1,2,2,0,1,1,1,1,1,2,0,-1,-1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^6+28t^4+34t^2+1 |
Outer characteristic polynomial |
t^7+40t^5+96t^3+11t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1*K3 + K4 |
2-strand cable arrow polynomial |
-512*K1**4 + 512*K1**3*K2*K3 - 128*K1**2*K2**2*K3**2 - 2240*K1**2*K2**2 - 384*K1**2*K2*K4 + 2048*K1**2*K2 - 2048*K1**2*K3**2 - 2032*K1**2 + 832*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 640*K1*K2**2*K3 - 128*K1*K2**2*K5 + 512*K1*K2*K3**3 - 64*K1*K2*K3*K4 - 384*K1*K2*K3*K6 + 5808*K1*K2*K3 + 1728*K1*K3*K4 + 48*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 2624*K2**2*K3**2 - 256*K2**2*K4**2 + 960*K2**2*K4 - 48*K2**2*K6**2 - 1760*K2**2 - 192*K2*K3**2*K4 + 1504*K2*K3*K5 + 288*K2*K4*K6 + 16*K2*K6*K8 - 640*K3**4 + 448*K3**2*K6 - 1520*K3**2 - 448*K4**2 - 160*K5**2 - 112*K6**2 - 2*K8**2 + 2240 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
False |