Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1387

Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,-1,1,1,2,2,1,2,1,2,0,0,-1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1387']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+34t^5+52t^3+17t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1387']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 256*K1**4*K2 - 2336*K1**4 + 704*K1**3*K2*K3 - 768*K1**3*K3 + 128*K1**2*K2**3 - 2784*K1**2*K2**2 - 640*K1**2*K2*K4 + 6416*K1**2*K2 - 1184*K1**2*K3**2 - 4624*K1**2 - 192*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 5920*K1*K2*K3 + 1280*K1*K3*K4 + 80*K1*K4*K5 - 80*K2**4 - 32*K2**2*K3**2 - 48*K2**2*K4**2 + 544*K2**2*K4 - 4068*K2**2 + 400*K2*K3*K5 + 208*K2*K4*K6 + 96*K3**2*K6 - 2312*K3**2 - 588*K4**2 - 216*K5**2 - 140*K6**2 + 4170
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1387']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4847', 'vk6.5190', 'vk6.6416', 'vk6.6847', 'vk6.8385', 'vk6.8808', 'vk6.9746', 'vk6.10043', 'vk6.20796', 'vk6.22192', 'vk6.29755', 'vk6.39834', 'vk6.46393', 'vk6.47969', 'vk6.49072', 'vk6.49905', 'vk6.51329', 'vk6.51546', 'vk6.58813', 'vk6.63277']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is +.
The reverse -K is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U5U2U6O4U1U3
R3 orbit {'O1O2O3U4O5O6U5U2U6O4U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U3O4U5U2U6O5O6U4
Gauss code of K* Same
Gauss code of -K* O1O2O3U1U3O4U5U2U6O5O6U4
Diagrammatic symmetry type +
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 -1 -1 2],[ 1 0 0 2 0 -1 2],[ 1 0 0 1 0 0 2],[-2 -2 -1 0 -2 -1 1],[ 1 0 0 2 0 0 1],[ 1 1 0 1 0 0 1],[-2 -2 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 2 -1 -1 -1 -1],[-2 0 1 -1 -1 -2 -2],[-2 -1 0 -1 -2 -1 -2],[ 1 1 1 0 0 0 1],[ 1 1 2 0 0 0 0],[ 1 2 1 0 0 0 0],[ 1 2 2 -1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,1,1,1,1,-1,1,1,2,2,1,2,1,2,0,0,-1,0,0,0]
Phi over symmetry [-2,-2,1,1,1,1,-1,1,1,2,2,1,2,1,2,0,0,-1,0,0,0]
Phi of -K [-1,-1,-1,-1,2,2,-1,0,0,2,2,0,0,1,1,0,1,2,2,1,-1]
Phi of K* [-2,-2,1,1,1,1,-1,1,1,2,2,1,2,1,2,0,0,-1,0,0,0]
Phi of -K* [-1,-1,-1,-1,2,2,-1,0,0,2,2,0,0,1,1,0,1,2,2,1,-1]
Symmetry type of based matrix +
u-polynomial -2t^2+4t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial -4w^3z+21w^2z+35w
Inner characteristic polynomial t^6+22t^4+30t^2+9
Outer characteristic polynomial t^7+34t^5+52t^3+17t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -128*K1**4*K2**2 + 256*K1**4*K2 - 2336*K1**4 + 704*K1**3*K2*K3 - 768*K1**3*K3 + 128*K1**2*K2**3 - 2784*K1**2*K2**2 - 640*K1**2*K2*K4 + 6416*K1**2*K2 - 1184*K1**2*K3**2 - 4624*K1**2 - 192*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 5920*K1*K2*K3 + 1280*K1*K3*K4 + 80*K1*K4*K5 - 80*K2**4 - 32*K2**2*K3**2 - 48*K2**2*K4**2 + 544*K2**2*K4 - 4068*K2**2 + 400*K2*K3*K5 + 208*K2*K4*K6 + 96*K3**2*K6 - 2312*K3**2 - 588*K4**2 - 216*K5**2 - 140*K6**2 + 4170
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact