Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1382

Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,0,1,1,1,2,1,1,1,2,-1,0,0,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1382']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.395', '6.430', '6.440', '6.548', '6.551', '6.774', '6.832', '6.887', '6.908', '6.911', '6.1205', '6.1332', '6.1339', '6.1341', '6.1346', '6.1382', '6.1488', '6.1651', '6.1655', '6.1686']
Outer characteristic polynomial of the knot is: t^7+40t^5+28t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.547', '6.1382']
2-strand cable arrow polynomial of the knot is: -448*K1**2*K2**4 + 384*K1**2*K2**3 - 3280*K1**2*K2**2 + 2136*K1**2*K2 - 1208*K1**2 + 512*K1*K2**3*K3 + 2552*K1*K2*K3 + 88*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 608*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 360*K2**2*K4 - 590*K2**2 + 32*K2*K3*K5 + 16*K2*K4*K6 - 560*K3**2 - 132*K4**2 - 2*K6**2 + 970
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1382']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17000', 'vk6.17241', 'vk6.20529', 'vk6.21927', 'vk6.23409', 'vk6.23716', 'vk6.27982', 'vk6.29451', 'vk6.35472', 'vk6.35917', 'vk6.39384', 'vk6.41573', 'vk6.42908', 'vk6.43207', 'vk6.45957', 'vk6.47636', 'vk6.55169', 'vk6.55413', 'vk6.57400', 'vk6.58576', 'vk6.59551', 'vk6.59889', 'vk6.62067', 'vk6.63052', 'vk6.64973', 'vk6.65179', 'vk6.66942', 'vk6.67801', 'vk6.68265', 'vk6.68419', 'vk6.69553', 'vk6.70251']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U3U2U6O4U1U5
R3 orbit {'O1O2O3U4O5O6U3U2U6O4U1U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U3O5U6U2U1O6O4U5
Gauss code of K* O1O2O3U4O5O6U5U2U1O4U6U3
Gauss code of -K* O1O2O3U1U4O5U3U2U6O4O6U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 -1 -1 2 2],[ 1 0 0 0 -1 2 2],[ 1 0 0 0 -1 2 2],[ 1 0 0 0 0 1 1],[ 1 1 1 0 0 2 2],[-2 -2 -2 -1 -2 0 0],[-2 -2 -2 -1 -2 0 0]]
Primitive based matrix [[ 0 2 2 -1 -1 -1 -1],[-2 0 0 -1 -2 -2 -2],[-2 0 0 -1 -2 -2 -2],[ 1 1 1 0 0 0 0],[ 1 2 2 0 0 1 1],[ 1 2 2 0 -1 0 0],[ 1 2 2 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,1,1,1,1,0,1,2,2,2,1,2,2,2,0,0,0,-1,-1,0]
Phi over symmetry [-2,-2,1,1,1,1,0,1,1,1,2,1,1,1,2,-1,0,0,1,0,0]
Phi of -K [-1,-1,-1,-1,2,2,-1,-1,0,1,1,0,0,1,1,0,1,1,2,2,0]
Phi of K* [-2,-2,1,1,1,1,0,1,1,1,2,1,1,1,2,-1,0,0,1,0,0]
Phi of -K* [-1,-1,-1,-1,2,2,-1,0,0,2,2,0,1,2,2,0,1,1,2,2,0]
Symmetry type of based matrix c
u-polynomial -2t^2+4t
Normalized Jones-Krushkal polynomial z+3
Enhanced Jones-Krushkal polynomial -16w^3z+17w^2z+3w
Inner characteristic polynomial t^6+28t^4+4t^2
Outer characteristic polynomial t^7+40t^5+28t^3
Flat arrow polynomial 4*K1**3 - 4*K1*K2 - K1 + K3 + 1
2-strand cable arrow polynomial -448*K1**2*K2**4 + 384*K1**2*K2**3 - 3280*K1**2*K2**2 + 2136*K1**2*K2 - 1208*K1**2 + 512*K1*K2**3*K3 + 2552*K1*K2*K3 + 88*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 608*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 360*K2**2*K4 - 590*K2**2 + 32*K2*K3*K5 + 16*K2*K4*K6 - 560*K3**2 - 132*K4**2 - 2*K6**2 + 970
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}]]
If K is slice False
Contact