Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1375

Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,1,1,2,2,3,0,0,1,1,0,1,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1375']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+51t^5+37t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1375']
2-strand cable arrow polynomial of the knot is: 64*K1**4*K2 - 2544*K1**4 + 320*K1**3*K2*K3 - 672*K1**3*K3 + 32*K1**2*K2**2*K4 - 2480*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 7064*K1**2*K2 - 976*K1**2*K3**2 - 96*K1**2*K3*K5 - 160*K1**2*K4**2 - 4884*K1**2 - 512*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5696*K1*K2*K3 + 1600*K1*K3*K4 + 216*K1*K4*K5 - 128*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 640*K2**2*K4 - 3942*K2**2 + 200*K2*K3*K5 + 8*K2*K4*K6 - 2076*K3**2 - 600*K4**2 - 88*K5**2 - 2*K6**2 + 4030
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1375']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73288', 'vk6.73296', 'vk6.73429', 'vk6.73437', 'vk6.74085', 'vk6.74101', 'vk6.74654', 'vk6.74670', 'vk6.75433', 'vk6.75441', 'vk6.76119', 'vk6.76135', 'vk6.78161', 'vk6.78169', 'vk6.78391', 'vk6.78399', 'vk6.79095', 'vk6.79111', 'vk6.79986', 'vk6.79994', 'vk6.80137', 'vk6.80145', 'vk6.80599', 'vk6.80615', 'vk6.83811', 'vk6.83813', 'vk6.85130', 'vk6.85134', 'vk6.86616', 'vk6.86620', 'vk6.87376', 'vk6.87384']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U1U3U6O4U2U5
R3 orbit {'O1O2O3U4O5O6U1U3U6O4U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O5U6U1U3O6O4U5
Gauss code of K* O1O2O3U4O5O6U1U5U2O4U6U3
Gauss code of -K* O1O2O3U1U4O5U2U6U3O4O6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 -1 2 2],[ 3 0 2 1 1 3 2],[ 0 -2 0 0 -1 1 1],[ 0 -1 0 0 -1 1 1],[ 1 -1 1 1 0 2 2],[-2 -3 -1 -1 -2 0 0],[-2 -2 -1 -1 -2 0 0]]
Primitive based matrix [[ 0 2 2 0 0 -1 -3],[-2 0 0 -1 -1 -2 -2],[-2 0 0 -1 -1 -2 -3],[ 0 1 1 0 0 -1 -1],[ 0 1 1 0 0 -1 -2],[ 1 2 2 1 1 0 -1],[ 3 2 3 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,0,1,3,0,1,1,2,2,1,1,2,3,0,1,1,1,2,1]
Phi over symmetry [-3,-1,0,0,2,2,1,1,2,2,3,0,0,1,1,0,1,1,1,1,0]
Phi of -K [-3,-1,0,0,2,2,1,1,2,2,3,0,0,1,1,0,1,1,1,1,0]
Phi of K* [-2,-2,0,0,1,3,0,1,1,1,2,1,1,1,3,0,0,1,0,2,1]
Phi of -K* [-3,-1,0,0,2,2,1,1,2,2,3,1,1,2,2,0,1,1,1,1,0]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+33t^4+15t^2
Outer characteristic polynomial t^7+51t^5+37t^3+4t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial 64*K1**4*K2 - 2544*K1**4 + 320*K1**3*K2*K3 - 672*K1**3*K3 + 32*K1**2*K2**2*K4 - 2480*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 7064*K1**2*K2 - 976*K1**2*K3**2 - 96*K1**2*K3*K5 - 160*K1**2*K4**2 - 4884*K1**2 - 512*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 5696*K1*K2*K3 + 1600*K1*K3*K4 + 216*K1*K4*K5 - 128*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 640*K2**2*K4 - 3942*K2**2 + 200*K2*K3*K5 + 8*K2*K4*K6 - 2076*K3**2 - 600*K4**2 - 88*K5**2 - 2*K6**2 + 4030
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}]]
If K is slice False
Contact