Gauss code |
O1O2O3U2O4O5U1U6U5O6U4U3 |
R3 orbit |
{'O1O2O3U2O4O5U1U6U5O6U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4O5U6U5U3O6O4U2 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U1U4O5U6U5U3O6O4U2 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 2 1 2 -1],[ 3 0 0 4 2 1 2],[ 1 0 0 1 0 0 1],[-2 -4 -1 0 0 1 -3],[-1 -2 0 0 0 1 -2],[-2 -1 0 -1 -1 0 -2],[ 1 -2 -1 3 2 2 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 1 0 -1 -3 -4],[-2 -1 0 -1 0 -2 -1],[-1 0 1 0 0 -2 -2],[ 1 1 0 0 0 1 0],[ 1 3 2 2 -1 0 -2],[ 3 4 1 2 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,-1,0,1,3,4,1,0,2,1,0,2,2,-1,0,2] |
Phi over symmetry |
[-3,-1,-1,1,2,2,0,2,2,1,4,1,0,0,1,2,2,3,1,0,-1] |
Phi of -K |
[-3,-1,-1,1,2,2,0,2,2,1,4,1,0,0,1,2,2,3,1,0,-1] |
Phi of K* |
[-2,-2,-1,1,1,3,-1,0,1,3,4,1,0,2,1,0,2,2,-1,0,2] |
Phi of -K* |
[-3,-1,-1,1,2,2,0,2,2,1,4,1,0,0,1,2,2,3,1,0,-1] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+46t^4+39t^2+4 |
Outer characteristic polynomial |
t^7+66t^5+69t^3+14t |
Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 10*K1*K2 + 2*K1 + 6*K2 + 4*K3 + 7 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 2176*K1**4*K2 - 4864*K1**4 + 1152*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1152*K1**3*K3 - 256*K1**2*K2**4 + 1664*K1**2*K2**3 + 512*K1**2*K2**2*K4 - 9440*K1**2*K2**2 - 1952*K1**2*K2*K4 + 12640*K1**2*K2 - 384*K1**2*K3**2 - 192*K1**2*K4**2 - 6968*K1**2 + 768*K1*K2**3*K3 - 1856*K1*K2**2*K3 - 896*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 10256*K1*K2*K3 - 128*K1*K2*K4*K5 + 1920*K1*K3*K4 + 576*K1*K4*K5 + 64*K1*K5*K6 - 32*K2**6 + 224*K2**4*K4 - 2048*K2**4 - 128*K2**3*K6 - 416*K2**2*K3**2 - 168*K2**2*K4**2 + 3344*K2**2*K4 - 6288*K2**2 + 880*K2*K3*K5 + 208*K2*K4*K6 - 2816*K3**2 - 1456*K4**2 - 392*K5**2 - 56*K6**2 + 6398 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |