Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1353

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,3,2,1,0,1,1,1,2,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1353']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+44t^5+73t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1353']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 288*K1**4*K2 - 1488*K1**4 + 96*K1**3*K2*K3 - 32*K1**3*K3 + 288*K1**2*K2**3 - 2560*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 4496*K1**2*K2 - 496*K1**2*K3**2 - 2892*K1**2 - 896*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 3648*K1*K2*K3 + 920*K1*K3*K4 + 112*K1*K4*K5 + 24*K1*K5*K6 - 600*K2**4 - 240*K2**2*K3**2 - 8*K2**2*K4**2 + 992*K2**2*K4 - 2566*K2**2 + 392*K2*K3*K5 + 16*K2*K4*K6 - 1352*K3**2 - 546*K4**2 - 180*K5**2 - 18*K6**2 + 2728
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1353']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16525', 'vk6.16617', 'vk6.17510', 'vk6.17566', 'vk6.18863', 'vk6.18941', 'vk6.19210', 'vk6.19505', 'vk6.23049', 'vk6.24110', 'vk6.25493', 'vk6.25568', 'vk6.26021', 'vk6.26407', 'vk6.34928', 'vk6.35042', 'vk6.36297', 'vk6.36365', 'vk6.37594', 'vk6.37683', 'vk6.42498', 'vk6.42610', 'vk6.43478', 'vk6.44610', 'vk6.54768', 'vk6.54860', 'vk6.56442', 'vk6.56558', 'vk6.59289', 'vk6.60186', 'vk6.66102', 'vk6.66144']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4O5U1U3U5O6U4U6
R3 orbit {'O1O2O3U2O4O5U1U3U5O6U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U6U1U3O6O5U2
Gauss code of K* O1O2O3U4O5O4U1U6U2O6U5U3
Gauss code of -K* O1O2O3U1U4O5U2U5U3O6O4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 0 1 2 1],[ 3 0 0 2 3 2 1],[ 1 0 0 1 1 1 0],[ 0 -2 -1 0 2 1 1],[-1 -3 -1 -2 0 0 1],[-2 -2 -1 -1 0 0 0],[-1 -1 0 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 0 -1 -1 -2],[-1 0 0 1 -2 -1 -3],[-1 0 -1 0 -1 0 -1],[ 0 1 2 1 0 -1 -2],[ 1 1 1 0 1 0 0],[ 3 2 3 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,0,1,1,2,-1,2,1,3,1,0,1,1,2,0]
Phi over symmetry [-3,-1,0,1,1,2,0,2,1,3,2,1,0,1,1,1,2,1,-1,0,0]
Phi of -K [-3,-1,0,1,1,2,2,1,1,3,3,0,1,2,2,-1,0,1,-1,1,1]
Phi of K* [-2,-1,-1,0,1,3,1,1,1,2,3,-1,0,2,3,-1,1,1,0,1,2]
Phi of -K* [-3,-1,0,1,1,2,0,2,1,3,2,1,0,1,1,1,2,1,-1,0,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+28t^4+16t^2
Outer characteristic polynomial t^7+44t^5+73t^3+4t
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 288*K1**4*K2 - 1488*K1**4 + 96*K1**3*K2*K3 - 32*K1**3*K3 + 288*K1**2*K2**3 - 2560*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 4496*K1**2*K2 - 496*K1**2*K3**2 - 2892*K1**2 - 896*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 3648*K1*K2*K3 + 920*K1*K3*K4 + 112*K1*K4*K5 + 24*K1*K5*K6 - 600*K2**4 - 240*K2**2*K3**2 - 8*K2**2*K4**2 + 992*K2**2*K4 - 2566*K2**2 + 392*K2*K3*K5 + 16*K2*K4*K6 - 1352*K3**2 - 546*K4**2 - 180*K5**2 - 18*K6**2 + 2728
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact