Gauss code |
O1O2O3U1O4O5U6U4U3O6U2U5 |
R3 orbit |
{'O1O2O3U1O4O5U6U4U3O6U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O5U1U6U5O4O6U3 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3U4U2O5U1U6U5O4O6U3 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 0 3 -2],[ 2 0 2 1 0 2 1],[ 0 -2 0 1 1 3 -2],[-1 -1 -1 0 0 1 -2],[ 0 0 -1 0 0 0 0],[-3 -2 -3 -1 0 0 -3],[ 2 -1 2 2 0 3 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -2 -2],[-3 0 -1 0 -3 -2 -3],[-1 1 0 0 -1 -1 -2],[ 0 0 0 0 -1 0 0],[ 0 3 1 1 0 -2 -2],[ 2 2 1 0 2 0 1],[ 2 3 2 0 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,2,2,1,0,3,2,3,0,1,1,2,1,0,0,2,2,-1] |
Phi over symmetry |
[-3,-1,0,0,2,2,1,0,3,2,3,0,1,1,2,1,0,0,2,2,-1] |
Phi of -K |
[-2,-2,0,0,1,3,-1,0,2,2,3,0,2,1,2,-1,0,0,1,3,1] |
Phi of K* |
[-3,-1,0,0,2,2,1,0,3,2,3,0,1,1,2,1,0,0,2,2,-1] |
Phi of -K* |
[-2,-2,0,0,1,3,-1,0,2,2,3,0,2,1,2,-1,0,0,1,3,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+18w^2z+33w |
Inner characteristic polynomial |
t^6+39t^4+28t^2+4 |
Outer characteristic polynomial |
t^7+57t^5+50t^3+8t |
Flat arrow polynomial |
-8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
192*K1**4*K2 - 2880*K1**4 - 256*K1**3*K3 - 2912*K1**2*K2**2 - 256*K1**2*K2*K4 + 7232*K1**2*K2 - 192*K1**2*K3**2 - 128*K1**2*K4**2 - 4672*K1**2 - 448*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 4832*K1*K2*K3 + 1312*K1*K3*K4 + 224*K1*K4*K5 - 256*K2**4 - 8*K2**2*K4**2 + 968*K2**2*K4 - 4054*K2**2 + 32*K2*K3*K5 + 8*K2*K4*K6 - 1936*K3**2 - 884*K4**2 - 80*K5**2 - 2*K6**2 + 4226 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |