Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1343

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,0,1,1,1,1,0,1,1,1,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1343', '7.37468']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+20t^5+35t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1343', '7.37468']
2-strand cable arrow polynomial of the knot is: -640*K1**4*K2**2 + 1888*K1**4*K2 - 5344*K1**4 + 1056*K1**3*K2*K3 - 928*K1**3*K3 - 640*K1**2*K2**4 + 2144*K1**2*K2**3 + 288*K1**2*K2**2*K4 - 8960*K1**2*K2**2 - 1312*K1**2*K2*K4 + 9384*K1**2*K2 - 544*K1**2*K3**2 - 96*K1**2*K4**2 - 2132*K1**2 + 1280*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 512*K1*K2**2*K5 - 352*K1*K2*K3*K4 + 6808*K1*K2*K3 - 96*K1*K2*K4*K5 + 896*K1*K3*K4 + 176*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 1912*K2**4 - 32*K2**3*K6 - 592*K2**2*K3**2 - 112*K2**2*K4**2 + 1632*K2**2*K4 - 2166*K2**2 + 504*K2*K3*K5 + 88*K2*K4*K6 - 1168*K3**2 - 378*K4**2 - 108*K5**2 - 18*K6**2 + 2832
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1343']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.333', 'vk6.373', 'vk6.450', 'vk6.727', 'vk6.779', 'vk6.897', 'vk6.1463', 'vk6.1523', 'vk6.1606', 'vk6.1960', 'vk6.2000', 'vk6.2083', 'vk6.2490', 'vk6.2745', 'vk6.3013', 'vk6.3133', 'vk6.3784', 'vk6.3977', 'vk6.7176', 'vk6.7353', 'vk6.18788', 'vk6.19861', 'vk6.24913', 'vk6.25376', 'vk6.25909', 'vk6.26300', 'vk6.26745', 'vk6.37988', 'vk6.38045', 'vk6.45043', 'vk6.50106', 'vk6.60762']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U4U5U3O6U2U6
R3 orbit {'O1O2O3U1O4O5U4U5U3O6U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O4U1U5U6O5O6U3
Gauss code of K* O1O2O3U4O5O4U6U5U3O6U1U2
Gauss code of -K* O1O2O3U2U3O4U1U5U4O6O5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 -1 1 1],[ 2 0 2 1 0 0 1],[ 0 -2 0 0 -1 1 1],[-1 -1 0 0 -1 1 0],[ 1 0 1 1 0 1 0],[-1 0 -1 -1 -1 0 0],[-1 -1 -1 0 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -1 -1],[-1 -1 0 0 -1 -1 0],[-1 0 0 0 -1 0 -1],[ 0 0 1 1 0 -1 -2],[ 1 1 1 0 1 0 0],[ 2 1 0 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,0,1,1,0,1,1,0,1,0,1,1,2,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,0,1,1,1,1,0,1,1,1,0,0,-1,0]
Phi of -K [-2,-1,0,1,1,1,1,0,2,2,3,0,1,2,1,1,0,0,0,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,3,0,1,1,2,0,2,2,0,0,1]
Phi of -K* [-2,-1,0,1,1,1,0,2,0,1,1,1,1,0,1,1,1,0,0,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+12t^4+16t^2+1
Outer characteristic polynomial t^7+20t^5+35t^3+8t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -640*K1**4*K2**2 + 1888*K1**4*K2 - 5344*K1**4 + 1056*K1**3*K2*K3 - 928*K1**3*K3 - 640*K1**2*K2**4 + 2144*K1**2*K2**3 + 288*K1**2*K2**2*K4 - 8960*K1**2*K2**2 - 1312*K1**2*K2*K4 + 9384*K1**2*K2 - 544*K1**2*K3**2 - 96*K1**2*K4**2 - 2132*K1**2 + 1280*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 512*K1*K2**2*K5 - 352*K1*K2*K3*K4 + 6808*K1*K2*K3 - 96*K1*K2*K4*K5 + 896*K1*K3*K4 + 176*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 1912*K2**4 - 32*K2**3*K6 - 592*K2**2*K3**2 - 112*K2**2*K4**2 + 1632*K2**2*K4 - 2166*K2**2 + 504*K2*K3*K5 + 88*K2*K4*K6 - 1168*K3**2 - 378*K4**2 - 108*K5**2 - 18*K6**2 + 2832
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {4, 5}, {2, 3}, {1}]]
If K is slice False
Contact