Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1337

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,3,2,3,2,2,1,1,1,1,1,2,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.1337']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+60t^5+57t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1337']
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 128*K1**4 - 192*K1**2*K2**4 + 480*K1**2*K2**3 - 4640*K1**2*K2**2 - 96*K1**2*K2*K4 + 5784*K1**2*K2 - 4124*K1**2 + 160*K1*K2**3*K3 - 416*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3808*K1*K2*K3 + 136*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 840*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 816*K2**2*K4 - 2376*K2**2 + 8*K2*K3*K5 - 764*K3**2 - 186*K4**2 + 2592
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1337']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11078', 'vk6.11158', 'vk6.12240', 'vk6.12349', 'vk6.18323', 'vk6.18661', 'vk6.24754', 'vk6.25211', 'vk6.30661', 'vk6.30754', 'vk6.31885', 'vk6.31955', 'vk6.36944', 'vk6.37408', 'vk6.44135', 'vk6.44458', 'vk6.51867', 'vk6.51914', 'vk6.52730', 'vk6.52839', 'vk6.56111', 'vk6.56333', 'vk6.60626', 'vk6.60960', 'vk6.63527', 'vk6.63573', 'vk6.64005', 'vk6.64051', 'vk6.65762', 'vk6.66025', 'vk6.68768', 'vk6.68977']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U3U6U4O6U2U5
R3 orbit {'O1O2O3U1O4O5U3U6U4O6U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2O5U6U5U1O4O6U3
Gauss code of K* O1O2O3U2O4O5U6U4U1O6U3U5
Gauss code of -K* O1O2O3U4U1O5U3U6U5O4O6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 1 3 -1],[ 2 0 2 1 1 2 2],[ 0 -2 0 -1 2 3 -1],[ 1 -1 1 0 1 2 0],[-1 -1 -2 -1 0 0 -1],[-3 -2 -3 -2 0 0 -3],[ 1 -2 1 0 1 3 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 0 -3 -2 -3 -2],[-1 0 0 -2 -1 -1 -1],[ 0 3 2 0 -1 -1 -2],[ 1 2 1 1 0 0 -1],[ 1 3 1 1 0 0 -2],[ 2 2 1 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,0,3,2,3,2,2,1,1,1,1,1,2,0,1,2]
Phi over symmetry [-3,-1,0,1,1,2,0,3,2,3,2,2,1,1,1,1,1,2,0,1,2]
Phi of -K [-2,-1,-1,0,1,3,-1,0,0,2,3,0,0,1,1,0,1,2,-1,0,2]
Phi of K* [-3,-1,0,1,1,2,2,0,1,2,3,-1,1,1,2,0,0,0,0,-1,0]
Phi of -K* [-2,-1,-1,0,1,3,1,2,2,1,2,0,1,1,2,1,1,3,2,3,0]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial 6w^3z^2-4w^3z+27w^2z+23w
Inner characteristic polynomial t^6+44t^4+32t^2
Outer characteristic polynomial t^7+60t^5+57t^3+8t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial 32*K1**4*K2 - 128*K1**4 - 192*K1**2*K2**4 + 480*K1**2*K2**3 - 4640*K1**2*K2**2 - 96*K1**2*K2*K4 + 5784*K1**2*K2 - 4124*K1**2 + 160*K1*K2**3*K3 - 416*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3808*K1*K2*K3 + 136*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 840*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 816*K2**2*K4 - 2376*K2**2 + 8*K2*K3*K5 - 764*K3**2 - 186*K4**2 + 2592
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice False
Contact