Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,2,2,2,-1,0,1,2,0,0,0,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1336'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+28t^5+44t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1336'] |
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 640*K1**4 - 176*K1**2*K2**2 + 1200*K1**2*K2 - 676*K1**2 + 416*K1*K2*K3 + 24*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 584*K2**2 - 180*K3**2 - 18*K4**2 + 592 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1336'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3631', 'vk6.3720', 'vk6.3913', 'vk6.4016', 'vk6.7057', 'vk6.7116', 'vk6.7293', 'vk6.7390', 'vk6.11389', 'vk6.12570', 'vk6.12683', 'vk6.19100', 'vk6.19147', 'vk6.19817', 'vk6.25713', 'vk6.25774', 'vk6.26250', 'vk6.26695', 'vk6.30995', 'vk6.31124', 'vk6.31175', 'vk6.31518', 'vk6.32175', 'vk6.32339', 'vk6.32758', 'vk6.37820', 'vk6.37877', 'vk6.39058', 'vk6.41318', 'vk6.44979', 'vk6.45810', 'vk6.48267', 'vk6.48448', 'vk6.52456', 'vk6.53342', 'vk6.58422', 'vk6.62942', 'vk6.63728', 'vk6.66201', 'vk6.66230'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1O4O5U3U5U4O6U2U6 |
R3 orbit | {'O1O2O3U1O4O5U3U5U4O6U2U6', 'O1O2O3U4O5U2U5O6U3U1O4U6'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3U4U2O4U5U6U1O6O5U3 |
Gauss code of K* | O1O2O3U4O5O4U6U5U1O6U3U2 |
Gauss code of -K* | O1O2O3U2U1O4U3U5U4O6O5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 -1 1 1 1],[ 2 0 2 1 1 1 1],[ 0 -2 0 -2 1 1 1],[ 1 -1 2 0 2 1 0],[-1 -1 -1 -2 0 0 0],[-1 -1 -1 -1 0 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix | [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 -1 0 -1],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -1 -2 -1],[ 0 1 1 1 0 -2 -2],[ 1 0 1 2 2 0 -1],[ 2 1 1 1 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,0,1,2,0,0,1,0,1,0,1,1,1,1,2,1,2,2,1] |
Phi over symmetry | [-2,-1,0,1,1,1,0,0,2,2,2,-1,0,1,2,0,0,0,0,0,0] |
Phi of -K | [-2,-1,0,1,1,1,0,0,2,2,2,-1,0,1,2,0,0,0,0,0,0] |
Phi of K* | [-1,-1,-1,0,1,2,0,0,0,0,2,0,0,1,2,0,2,2,-1,0,0] |
Phi of -K* | [-2,-1,0,1,1,1,1,2,1,1,1,2,0,1,2,1,1,1,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 9z+19 |
Enhanced Jones-Krushkal polynomial | -4w^3z+13w^2z+19w |
Inner characteristic polynomial | t^6+20t^4+23t^2 |
Outer characteristic polynomial | t^7+28t^5+44t^3 |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | 32*K1**4*K2 - 640*K1**4 - 176*K1**2*K2**2 + 1200*K1**2*K2 - 676*K1**2 + 416*K1*K2*K3 + 24*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 584*K2**2 - 180*K3**2 - 18*K4**2 + 592 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {5}, {3, 4}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice | False |