Gauss code |
O1O2O3U4O5O6U5U6O4U1U3U2 |
R3 orbit |
{'O1O2O3U4O5O6U5U6O4U1U3U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U2U1U3O4U5U6O5O6U4 |
Gauss code of K* |
O1O2O3U1U3U2O4U5U6O5O6U4 |
Gauss code of -K* |
O1O2O3U4O5O6U5U6O4U2U1U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 1 0 -1 1],[ 2 0 2 1 2 -1 1],[-1 -2 0 0 -1 -1 1],[-1 -1 0 0 -1 -1 1],[ 0 -2 1 1 0 0 0],[ 1 1 1 1 0 0 1],[-1 -1 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 0 -1 -1],[-1 0 1 0 -1 -1 -2],[ 0 1 0 1 0 0 -2],[ 1 1 1 1 0 0 1],[ 2 1 1 2 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,0,1,1,1,1,0,1,1,1,1,2,0,2,-1] |
Phi over symmetry |
[-2,-1,0,1,1,1,-1,2,1,1,2,0,1,1,1,0,1,1,-1,-1,0] |
Phi of -K |
[-2,-1,0,1,1,1,2,0,1,2,2,1,1,1,1,0,0,1,0,-1,-1] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,-1,1,1,2,0,0,1,1,0,1,2,1,0,2] |
Phi of -K* |
[-2,-1,0,1,1,1,-1,2,1,1,2,0,1,1,1,0,1,1,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
6z^2+19z+15 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+19w^2z+15w |
Inner characteristic polynomial |
t^6+18t^4+50t^2+1 |
Outer characteristic polynomial |
t^7+26t^5+79t^3+4t |
Flat arrow polynomial |
4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3 |
2-strand cable arrow polynomial |
2304*K1**4*K2 - 4192*K1**4 + 2048*K1**3*K2*K3 - 192*K1**3*K3 - 384*K1**2*K2**4 + 1952*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9168*K1**2*K2**2 - 416*K1**2*K2*K4 + 5128*K1**2*K2 - 1888*K1**2*K3**2 - 96*K1**2*K4**2 + 1072*K1**2 + 1728*K1*K2**3*K3 - 2464*K1*K2**2*K3 - 384*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4992*K1*K2*K3 + 1176*K1*K3*K4 + 56*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2664*K2**4 - 128*K2**3*K6 - 1872*K2**2*K3**2 - 112*K2**2*K4**2 + 1584*K2**2*K4 + 530*K2**2 + 776*K2*K3*K5 + 48*K2*K4*K6 - 396*K3**2 - 126*K4**2 - 36*K5**2 - 2*K6**2 + 708 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |