Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1326

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,2,1,1,2,0,1,1,1,0,1,1,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1326', '7.26839']
Arrow polynomial of the knot is: 4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.140', '6.569', '6.943', '6.970', '6.1234', '6.1298', '6.1311', '6.1326', '6.1500', '6.1506', '6.1708', '6.1712', '6.1720', '6.1859']
Outer characteristic polynomial of the knot is: t^7+26t^5+79t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1326', '7.26839']
2-strand cable arrow polynomial of the knot is: 2304*K1**4*K2 - 4192*K1**4 + 2048*K1**3*K2*K3 - 192*K1**3*K3 - 384*K1**2*K2**4 + 1952*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9168*K1**2*K2**2 - 416*K1**2*K2*K4 + 5128*K1**2*K2 - 1888*K1**2*K3**2 - 96*K1**2*K4**2 + 1072*K1**2 + 1728*K1*K2**3*K3 - 2464*K1*K2**2*K3 - 384*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4992*K1*K2*K3 + 1176*K1*K3*K4 + 56*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2664*K2**4 - 128*K2**3*K6 - 1872*K2**2*K3**2 - 112*K2**2*K4**2 + 1584*K2**2*K4 + 530*K2**2 + 776*K2*K3*K5 + 48*K2*K4*K6 - 396*K3**2 - 126*K4**2 - 36*K5**2 - 2*K6**2 + 708
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1326']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.513', 'vk6.606', 'vk6.636', 'vk6.1013', 'vk6.1108', 'vk6.1149', 'vk6.1865', 'vk6.2288', 'vk6.2522', 'vk6.2572', 'vk6.2599', 'vk6.2810', 'vk6.2901', 'vk6.2924', 'vk6.3085', 'vk6.3205', 'vk6.5278', 'vk6.6536', 'vk6.8914', 'vk6.9830', 'vk6.20844', 'vk6.21120', 'vk6.22243', 'vk6.22550', 'vk6.28571', 'vk6.29803', 'vk6.39900', 'vk6.42219', 'vk6.46455', 'vk6.46842', 'vk6.48005', 'vk6.48079']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O6U5U6O4U1U3U2
R3 orbit {'O1O2O3U4O5O6U5U6O4U1U3U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U1U3O4U5U6O5O6U4
Gauss code of K* O1O2O3U1U3U2O4U5U6O5O6U4
Gauss code of -K* O1O2O3U4O5O6U5U6O4U2U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 0 -1 1],[ 2 0 2 1 2 -1 1],[-1 -2 0 0 -1 -1 1],[-1 -1 0 0 -1 -1 1],[ 0 -2 1 1 0 0 0],[ 1 1 1 1 0 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 0 -1 -1],[-1 0 1 0 -1 -1 -2],[ 0 1 0 1 0 0 -2],[ 1 1 1 1 0 0 1],[ 2 1 1 2 2 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,1,1,0,1,1,1,1,2,0,2,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,2,1,1,2,0,1,1,1,0,1,1,-1,-1,0]
Phi of -K [-2,-1,0,1,1,1,2,0,1,2,2,1,1,1,1,0,0,1,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,0,0,1,1,0,1,2,1,0,2]
Phi of -K* [-2,-1,0,1,1,1,-1,2,1,1,2,0,1,1,1,0,1,1,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial 6w^3z^2+19w^2z+15w
Inner characteristic polynomial t^6+18t^4+50t^2+1
Outer characteristic polynomial t^7+26t^5+79t^3+4t
Flat arrow polynomial 4*K1**3 + 2*K1**2 - 4*K1*K2 - K1 - K2 + K3
2-strand cable arrow polynomial 2304*K1**4*K2 - 4192*K1**4 + 2048*K1**3*K2*K3 - 192*K1**3*K3 - 384*K1**2*K2**4 + 1952*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9168*K1**2*K2**2 - 416*K1**2*K2*K4 + 5128*K1**2*K2 - 1888*K1**2*K3**2 - 96*K1**2*K4**2 + 1072*K1**2 + 1728*K1*K2**3*K3 - 2464*K1*K2**2*K3 - 384*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 4992*K1*K2*K3 + 1176*K1*K3*K4 + 56*K1*K4*K5 - 288*K2**6 + 448*K2**4*K4 - 2664*K2**4 - 128*K2**3*K6 - 1872*K2**2*K3**2 - 112*K2**2*K4**2 + 1584*K2**2*K4 + 530*K2**2 + 776*K2*K3*K5 + 48*K2*K4*K6 - 396*K3**2 - 126*K4**2 - 36*K5**2 - 2*K6**2 + 708
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}]]
If K is slice False
Contact