Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1308

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,0,0,1,1,1,2,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1308']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+30t^5+63t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1308']
2-strand cable arrow polynomial of the knot is: -384*K1**6 + 1056*K1**4*K2 - 4288*K1**4 + 640*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1504*K1**3*K3 - 3424*K1**2*K2**2 - 640*K1**2*K2*K4 + 9680*K1**2*K2 - 1408*K1**2*K3**2 - 240*K1**2*K4**2 - 6112*K1**2 - 352*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 7784*K1*K2*K3 + 2096*K1*K3*K4 + 304*K1*K4*K5 - 120*K2**4 - 352*K2**2*K3**2 - 112*K2**2*K4**2 + 752*K2**2*K4 - 5180*K2**2 - 96*K2*K3**2*K4 + 400*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2844*K3**2 - 854*K4**2 - 148*K5**2 - 28*K6**2 + 5404
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1308']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4449', 'vk6.4546', 'vk6.5831', 'vk6.5960', 'vk6.7893', 'vk6.8009', 'vk6.9318', 'vk6.9439', 'vk6.13414', 'vk6.13511', 'vk6.13702', 'vk6.14071', 'vk6.15046', 'vk6.15168', 'vk6.17772', 'vk6.17805', 'vk6.18820', 'vk6.19438', 'vk6.19733', 'vk6.24319', 'vk6.25417', 'vk6.25450', 'vk6.26612', 'vk6.33268', 'vk6.33329', 'vk6.37547', 'vk6.44895', 'vk6.48638', 'vk6.50540', 'vk6.53660', 'vk6.55808', 'vk6.65478']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O4U6U2O6U5U1U3
R3 orbit {'O1O2O3U4O5O4U6U2O6U5U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U3U4O5U2U5O6O4U6
Gauss code of K* O1O2O3U2U4U3O5U1U5O6O4U6
Gauss code of -K* O1O2O3U4O5O4U6U3O6U1U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 1 0 -1],[ 1 0 0 2 2 0 0],[ 1 0 0 1 1 -1 1],[-2 -2 -1 0 -1 -1 -2],[-1 -2 -1 1 0 0 -2],[ 0 0 1 1 0 0 0],[ 1 0 -1 2 2 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -1 -2 -2],[ 0 1 0 0 1 0 0],[ 1 1 1 -1 0 1 0],[ 1 2 2 0 -1 0 0],[ 1 2 2 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,2,0,1,2,2,-1,0,0,-1,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,1,0,0,1,1,1,2,0,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,2,1,2,0,1,0,1,1,0,1,1,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,1,1,2,1,0,0,1,1,1,2,0,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,2,2,0,-1,1,1,0,2,2,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+22t^4+42t^2+4
Outer characteristic polynomial t^7+30t^5+63t^3+11t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -384*K1**6 + 1056*K1**4*K2 - 4288*K1**4 + 640*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1504*K1**3*K3 - 3424*K1**2*K2**2 - 640*K1**2*K2*K4 + 9680*K1**2*K2 - 1408*K1**2*K3**2 - 240*K1**2*K4**2 - 6112*K1**2 - 352*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 7784*K1*K2*K3 + 2096*K1*K3*K4 + 304*K1*K4*K5 - 120*K2**4 - 352*K2**2*K3**2 - 112*K2**2*K4**2 + 752*K2**2*K4 - 5180*K2**2 - 96*K2*K3**2*K4 + 400*K2*K3*K5 + 136*K2*K4*K6 + 24*K3**2*K6 - 2844*K3**2 - 854*K4**2 - 148*K5**2 - 28*K6**2 + 5404
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact