Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1305

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,3,1,2,1,1,0,1,1,0,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1305']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+37t^5+95t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1305']
2-strand cable arrow polynomial of the knot is: -896*K1**4*K2**2 + 1888*K1**4*K2 - 3312*K1**4 - 256*K1**3*K2**2*K3 + 480*K1**3*K2*K3 - 608*K1**3*K3 + 2304*K1**2*K2**3 - 7840*K1**2*K2**2 - 672*K1**2*K2*K4 + 8792*K1**2*K2 - 336*K1**2*K3**2 - 4796*K1**2 + 928*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 - 224*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6520*K1*K2*K3 + 816*K1*K3*K4 + 40*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 1584*K2**4 - 32*K2**3*K6 - 688*K2**2*K3**2 - 112*K2**2*K4**2 + 1056*K2**2*K4 - 3014*K2**2 - 96*K2*K3**2*K4 + 312*K2*K3*K5 + 88*K2*K4*K6 + 24*K3**2*K6 - 1592*K3**2 - 404*K4**2 - 52*K5**2 - 18*K6**2 + 3954
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1305']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13374', 'vk6.13447', 'vk6.13638', 'vk6.13756', 'vk6.14156', 'vk6.14389', 'vk6.15620', 'vk6.16082', 'vk6.16459', 'vk6.16476', 'vk6.17631', 'vk6.22858', 'vk6.22891', 'vk6.24186', 'vk6.33129', 'vk6.33172', 'vk6.33236', 'vk6.33289', 'vk6.34839', 'vk6.34872', 'vk6.36432', 'vk6.42433', 'vk6.42450', 'vk6.43533', 'vk6.53558', 'vk6.53603', 'vk6.53636', 'vk6.53692', 'vk6.54717', 'vk6.55672', 'vk6.60225', 'vk6.64583']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5O4U6U1O6U5U2U3
R3 orbit {'O1O2O3U4O5O4U6U1O6U5U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U2U4O5U3U5O6O4U6
Gauss code of K* O1O2O3U4U2U3O5U1U5O6O4U6
Gauss code of -K* O1O2O3U4O5O4U6U3O6U1U2U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 1 0 -1],[ 2 0 1 2 2 -1 2],[ 0 -1 0 1 1 -1 0],[-2 -2 -1 0 -1 -1 -2],[-1 -2 -1 1 0 0 -2],[ 0 1 1 1 0 0 0],[ 1 -2 0 2 2 0 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -1 -2 -2],[ 0 1 0 0 1 0 1],[ 0 1 1 -1 0 0 -1],[ 1 2 2 0 0 0 -2],[ 2 2 2 -1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,1,2,2,0,1,2,2,-1,0,-1,0,1,2]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,3,1,2,1,1,0,1,1,0,1,1,1,0]
Phi of -K [-2,-1,0,0,1,2,-1,1,3,1,2,1,1,0,1,1,0,1,1,1,0]
Phi of K* [-2,-1,0,0,1,2,0,1,1,1,2,0,1,0,1,-1,1,1,1,3,-1]
Phi of -K* [-2,-1,0,0,1,2,2,-1,1,2,2,0,0,2,2,1,0,1,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+27t^4+55t^2+4
Outer characteristic polynomial t^7+37t^5+95t^3+11t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -896*K1**4*K2**2 + 1888*K1**4*K2 - 3312*K1**4 - 256*K1**3*K2**2*K3 + 480*K1**3*K2*K3 - 608*K1**3*K3 + 2304*K1**2*K2**3 - 7840*K1**2*K2**2 - 672*K1**2*K2*K4 + 8792*K1**2*K2 - 336*K1**2*K3**2 - 4796*K1**2 + 928*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 800*K1*K2**2*K3 - 224*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6520*K1*K2*K3 + 816*K1*K3*K4 + 40*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 1584*K2**4 - 32*K2**3*K6 - 688*K2**2*K3**2 - 112*K2**2*K4**2 + 1056*K2**2*K4 - 3014*K2**2 - 96*K2*K3**2*K4 + 312*K2*K3*K5 + 88*K2*K4*K6 + 24*K3**2*K6 - 1592*K3**2 - 404*K4**2 - 52*K5**2 - 18*K6**2 + 3954
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}]]
If K is slice False
Contact