Min(phi) over symmetries of the knot is: [-3,-2,-1,2,2,2,0,2,2,3,3,2,1,2,2,2,2,2,-1,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.130'] |
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 - 2*K2**2 + K4 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.130', '6.560'] |
Outer characteristic polynomial of the knot is: t^7+79t^5+72t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.130'] |
2-strand cable arrow polynomial of the knot is: -64*K1**3*K3 - 192*K1**2*K2**4 + 800*K1**2*K2**3 + 160*K1**2*K2**2*K4 - 4304*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 864*K1**2*K2*K4 + 5184*K1**2*K2 - 128*K1**2*K3**2 - 128*K1**2*K4**2 - 5096*K1**2 + 352*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 256*K1*K2**2*K5 - 512*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6272*K1*K2*K3 - 64*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1552*K1*K3*K4 + 448*K1*K4*K5 + 112*K1*K5*K6 + 56*K1*K6*K7 - 32*K2**6 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1176*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 656*K2**2*K3**2 + 32*K2**2*K4**3 - 424*K2**2*K4**2 + 2416*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 4148*K2**2 - 96*K2*K3*K4*K5 + 976*K2*K3*K5 - 32*K2*K4**2*K6 + 408*K2*K4*K6 + 96*K2*K5*K7 + 8*K2*K6*K8 + 8*K3**2*K6 - 2336*K3**2 + 104*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1400*K4**2 - 440*K5**2 - 180*K6**2 - 88*K7**2 - 2*K8**2 + 4408 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.130'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4734', 'vk6.5058', 'vk6.6264', 'vk6.6709', 'vk6.8231', 'vk6.8676', 'vk6.9616', 'vk6.9938', 'vk6.20660', 'vk6.22091', 'vk6.28146', 'vk6.29575', 'vk6.39588', 'vk6.41819', 'vk6.46203', 'vk6.47821', 'vk6.48766', 'vk6.48972', 'vk6.49568', 'vk6.49779', 'vk6.50776', 'vk6.50985', 'vk6.51256', 'vk6.51460', 'vk6.57576', 'vk6.58742', 'vk6.62246', 'vk6.63192', 'vk6.67046', 'vk6.67919', 'vk6.69671', 'vk6.70352'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5O6U4U2U6U5U1U3 |
R3 orbit | {'O1O2O3O4O5O6U4U2U6U5U1U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5O6U4U6U2U1U5U3 |
Gauss code of K* | O1O2O3O4O5O6U5U2U6U1U4U3 |
Gauss code of -K* | O1O2O3O4O5O6U4U3U6U1U5U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -3 2 -2 2 2],[ 1 0 -2 2 -2 2 2],[ 3 2 0 3 0 3 2],[-2 -2 -3 0 -2 1 1],[ 2 2 0 2 0 2 1],[-2 -2 -3 -1 -2 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix | [[ 0 2 2 2 -1 -2 -3],[-2 0 1 1 -2 -2 -3],[-2 -1 0 0 -2 -1 -2],[-2 -1 0 0 -2 -2 -3],[ 1 2 2 2 0 -2 -2],[ 2 2 1 2 2 0 0],[ 3 3 2 3 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-2,1,2,3,-1,-1,2,2,3,0,2,1,2,2,2,3,2,2,0] |
Phi over symmetry | [-3,-2,-1,2,2,2,0,2,2,3,3,2,1,2,2,2,2,2,-1,0,1] |
Phi of -K | [-3,-2,-1,2,2,2,1,0,2,2,3,-1,2,2,3,1,1,1,-1,-1,0] |
Phi of K* | [-2,-2,-2,1,2,3,-1,0,1,2,2,1,1,2,2,1,3,3,-1,0,1] |
Phi of -K* | [-3,-2,-1,2,2,2,0,2,2,3,3,2,1,2,2,2,2,2,-1,0,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 8z^2+27z+23 |
Enhanced Jones-Krushkal polynomial | 8w^3z^2-2w^3z+29w^2z+23w |
Inner characteristic polynomial | t^6+53t^4+32t^2 |
Outer characteristic polynomial | t^7+79t^5+72t^3+9t |
Flat arrow polynomial | 4*K1**3 + 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 - 2*K2**2 + K4 + 2 |
2-strand cable arrow polynomial | -64*K1**3*K3 - 192*K1**2*K2**4 + 800*K1**2*K2**3 + 160*K1**2*K2**2*K4 - 4304*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 864*K1**2*K2*K4 + 5184*K1**2*K2 - 128*K1**2*K3**2 - 128*K1**2*K4**2 - 5096*K1**2 + 352*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 256*K1*K2**2*K5 - 512*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6272*K1*K2*K3 - 64*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1552*K1*K3*K4 + 448*K1*K4*K5 + 112*K1*K5*K6 + 56*K1*K6*K7 - 32*K2**6 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1176*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 656*K2**2*K3**2 + 32*K2**2*K4**3 - 424*K2**2*K4**2 + 2416*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 4148*K2**2 - 96*K2*K3*K4*K5 + 976*K2*K3*K5 - 32*K2*K4**2*K6 + 408*K2*K4*K6 + 96*K2*K5*K7 + 8*K2*K6*K8 + 8*K3**2*K6 - 2336*K3**2 + 104*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1400*K4**2 - 440*K5**2 - 180*K6**2 - 88*K7**2 - 2*K8**2 + 4408 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |