Gauss code |
O1O2O3O4O5O6U1U3U2U4U6U5 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U2U4U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U2U1U3U5U4U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U2U1U3U5U4U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -2 -2 1 4 4],[ 5 0 2 1 3 5 4],[ 2 -2 0 0 2 4 3],[ 2 -1 0 0 1 3 2],[-1 -3 -2 -1 0 2 1],[-4 -5 -4 -3 -2 0 0],[-4 -4 -3 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 4 4 1 -2 -2 -5],[-4 0 0 -1 -2 -3 -4],[-4 0 0 -2 -3 -4 -5],[-1 1 2 0 -1 -2 -3],[ 2 2 3 1 0 0 -1],[ 2 3 4 2 0 0 -2],[ 5 4 5 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-4,-1,2,2,5,0,1,2,3,4,2,3,4,5,1,2,3,0,1,2] |
Phi over symmetry |
[-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0] |
Phi of -K |
[-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0] |
Phi of K* |
[-4,-4,-1,2,2,5,0,1,2,3,4,2,3,4,5,1,2,3,0,1,2] |
Phi of -K* |
[-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-2t^4+2t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+103t^4+40t^2 |
Outer characteristic polynomial |
t^7+169t^5+174t^3+4t |
Flat arrow polynomial |
K1 - 2*K2*K3 + K5 + 1 |
2-strand cable arrow polynomial |
-192*K1**3*K3 + 1584*K1**2*K2 - 1216*K1**2*K3**2 - 192*K1**2*K3*K5 - 64*K1**2*K6**2 - 2488*K1**2 - 448*K1*K2**2*K3 + 512*K1*K2*K3**3 - 256*K1*K2*K3*K4 + 64*K1*K2*K3*K6**2 - 192*K1*K2*K3*K6 + 2400*K1*K2*K3 - 192*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 1680*K1*K3*K4 + 416*K1*K4*K5 + 48*K1*K5*K6 + 80*K1*K6*K7 - 2*K10**2 + 8*K10*K4*K6 - 128*K2**4 - 384*K2**2*K3**2 + 480*K2**2*K4 - 32*K2**2*K6**2 - 1666*K2**2 - 64*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 656*K2*K3*K5 + 72*K2*K4*K6 + 32*K2*K5*K7 - 640*K3**4 - 64*K3**2*K4**2 - 64*K3**2*K6**2 + 528*K3**2*K6 - 1168*K3**2 + 96*K3*K4*K7 + 16*K3*K6*K9 - 8*K4**2*K6**2 - 700*K4**2 - 312*K5**2 - 84*K6**2 - 48*K7**2 + 2058 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}]] |
If K is slice |
False |