Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.13

Min(phi) over symmetries of the knot is: [-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.13']
Arrow polynomial of the knot is: K1 - 2*K2*K3 + K5 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.13', '6.30', '6.33', '6.42', '6.56']
Outer characteristic polynomial of the knot is: t^7+169t^5+174t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.13']
2-strand cable arrow polynomial of the knot is: -192*K1**3*K3 + 1584*K1**2*K2 - 1216*K1**2*K3**2 - 192*K1**2*K3*K5 - 64*K1**2*K6**2 - 2488*K1**2 - 448*K1*K2**2*K3 + 512*K1*K2*K3**3 - 256*K1*K2*K3*K4 + 64*K1*K2*K3*K6**2 - 192*K1*K2*K3*K6 + 2400*K1*K2*K3 - 192*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 1680*K1*K3*K4 + 416*K1*K4*K5 + 48*K1*K5*K6 + 80*K1*K6*K7 - 2*K10**2 + 8*K10*K4*K6 - 128*K2**4 - 384*K2**2*K3**2 + 480*K2**2*K4 - 32*K2**2*K6**2 - 1666*K2**2 - 64*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 656*K2*K3*K5 + 72*K2*K4*K6 + 32*K2*K5*K7 - 640*K3**4 - 64*K3**2*K4**2 - 64*K3**2*K6**2 + 528*K3**2*K6 - 1168*K3**2 + 96*K3*K4*K7 + 16*K3*K6*K9 - 8*K4**2*K6**2 - 700*K4**2 - 312*K5**2 - 84*K6**2 - 48*K7**2 + 2058
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.13']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.82816', 'vk6.82818', 'vk6.82932', 'vk6.82933', 'vk6.82935', 'vk6.82939', 'vk6.83251', 'vk6.83253', 'vk6.83255', 'vk6.83263', 'vk6.86072', 'vk6.86074', 'vk6.86799', 'vk6.86800', 'vk6.86801', 'vk6.86803', 'vk6.89665', 'vk6.89667', 'vk6.90001', 'vk6.90005']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is +.
The reverse -K is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5O6U1U3U2U4U6U5
R3 orbit {'O1O2O3O4O5O6U1U3U2U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5O6U2U1U3U5U4U6
Gauss code of K* Same
Gauss code of -K* O1O2O3O4O5O6U2U1U3U5U4U6
Diagrammatic symmetry type +
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -5 -2 -2 1 4 4],[ 5 0 2 1 3 5 4],[ 2 -2 0 0 2 4 3],[ 2 -1 0 0 1 3 2],[-1 -3 -2 -1 0 2 1],[-4 -5 -4 -3 -2 0 0],[-4 -4 -3 -2 -1 0 0]]
Primitive based matrix [[ 0 4 4 1 -2 -2 -5],[-4 0 0 -1 -2 -3 -4],[-4 0 0 -2 -3 -4 -5],[-1 1 2 0 -1 -2 -3],[ 2 2 3 1 0 0 -1],[ 2 3 4 2 0 0 -2],[ 5 4 5 3 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-4,-1,2,2,5,0,1,2,3,4,2,3,4,5,1,2,3,0,1,2]
Phi over symmetry [-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0]
Phi of -K [-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0]
Phi of K* [-4,-4,-1,2,2,5,0,1,2,3,4,2,3,4,5,1,2,3,0,1,2]
Phi of -K* [-5,-2,-2,1,4,4,1,2,3,4,5,0,1,2,3,2,3,4,1,2,0]
Symmetry type of based matrix +
u-polynomial t^5-2t^4+2t^2-t
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial 6w^3z^2+23w^2z+23w
Inner characteristic polynomial t^6+103t^4+40t^2
Outer characteristic polynomial t^7+169t^5+174t^3+4t
Flat arrow polynomial K1 - 2*K2*K3 + K5 + 1
2-strand cable arrow polynomial -192*K1**3*K3 + 1584*K1**2*K2 - 1216*K1**2*K3**2 - 192*K1**2*K3*K5 - 64*K1**2*K6**2 - 2488*K1**2 - 448*K1*K2**2*K3 + 512*K1*K2*K3**3 - 256*K1*K2*K3*K4 + 64*K1*K2*K3*K6**2 - 192*K1*K2*K3*K6 + 2400*K1*K2*K3 - 192*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 1680*K1*K3*K4 + 416*K1*K4*K5 + 48*K1*K5*K6 + 80*K1*K6*K7 - 2*K10**2 + 8*K10*K4*K6 - 128*K2**4 - 384*K2**2*K3**2 + 480*K2**2*K4 - 32*K2**2*K6**2 - 1666*K2**2 - 64*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 656*K2*K3*K5 + 72*K2*K4*K6 + 32*K2*K5*K7 - 640*K3**4 - 64*K3**2*K4**2 - 64*K3**2*K6**2 + 528*K3**2*K6 - 1168*K3**2 + 96*K3*K4*K7 + 16*K3*K6*K9 - 8*K4**2*K6**2 - 700*K4**2 - 312*K5**2 - 84*K6**2 - 48*K7**2 + 2058
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}]]
If K is slice False
Contact