Gauss code |
O1O2O3U2O4O5U6U3O6U4U1U5 |
R3 orbit |
{'O1O2O3U2O4O5U6U3O6U4U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U3U5O6U1U6O4O5U2 |
Gauss code of K* |
O1O2O3U2U4U5O4U1U3O6O5U6 |
Gauss code of -K* |
O1O2O3U4O5O4U1U3O6U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 0 0 3 -1],[ 1 0 -1 1 1 3 0],[ 1 1 0 1 1 1 0],[ 0 -1 -1 0 0 1 0],[ 0 -1 -1 0 0 1 0],[-3 -3 -1 -1 -1 0 -3],[ 1 0 0 0 0 3 0]] |
Primitive based matrix |
[[ 0 3 0 0 -1 -1 -1],[-3 0 -1 -1 -1 -3 -3],[ 0 1 0 0 -1 0 -1],[ 0 1 0 0 -1 0 -1],[ 1 1 1 1 0 0 1],[ 1 3 0 0 0 0 0],[ 1 3 1 1 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,0,0,1,1,1,1,1,1,3,3,0,1,0,1,1,0,1,0,-1,0] |
Phi over symmetry |
[-3,0,0,1,1,1,1,1,1,3,3,0,1,0,1,1,0,1,0,-1,0] |
Phi of -K |
[-1,-1,-1,0,0,3,-1,0,0,0,3,0,0,0,1,1,1,1,0,2,2] |
Phi of K* |
[-3,0,0,1,1,1,2,2,1,1,3,0,0,1,0,0,1,0,0,-1,0] |
Phi of -K* |
[-1,-1,-1,0,0,3,-1,0,1,1,3,0,1,1,1,0,0,3,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+3t |
Normalized Jones-Krushkal polynomial |
7z^2+28z+29 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+28w^2z+29w |
Inner characteristic polynomial |
t^6+26t^4+47t^2 |
Outer characteristic polynomial |
t^7+38t^5+75t^3+2t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 10*K1*K2 - K1 + 2*K2 + 3*K3 + 3 |
2-strand cable arrow polynomial |
2784*K1**4*K2 - 5952*K1**4 + 1856*K1**3*K2*K3 - 1696*K1**3*K3 - 384*K1**2*K2**4 + 1376*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9216*K1**2*K2**2 - 1280*K1**2*K2*K4 + 10088*K1**2*K2 - 2048*K1**2*K3**2 - 96*K1**2*K4**2 - 3128*K1**2 + 1184*K1*K2**3*K3 - 2112*K1*K2**2*K3 - 480*K1*K2**2*K5 - 512*K1*K2*K3*K4 + 9280*K1*K2*K3 + 2408*K1*K3*K4 + 240*K1*K4*K5 - 192*K2**6 + 384*K2**4*K4 - 1808*K2**4 - 96*K2**3*K6 - 1152*K2**2*K3**2 - 264*K2**2*K4**2 + 2208*K2**2*K4 - 3506*K2**2 + 1000*K2*K3*K5 + 168*K2*K4*K6 - 2312*K3**2 - 920*K4**2 - 232*K5**2 - 30*K6**2 + 4054 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |