Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1297

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,1,3,3,0,1,1,2,1,0,2,0,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1297']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+50t^5+118t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1297']
2-strand cable arrow polynomial of the knot is: -1600*K1**2*K2**4 + 3360*K1**2*K2**3 - 6896*K1**2*K2**2 - 736*K1**2*K2*K4 + 4584*K1**2*K2 - 3112*K1**2 + 1984*K1*K2**3*K3 - 992*K1*K2**2*K3 - 224*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4752*K1*K2*K3 + 456*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 2616*K2**4 - 816*K2**2*K3**2 - 8*K2**2*K4**2 + 1648*K2**2*K4 - 720*K2**2 + 328*K2*K3*K5 - 968*K3**2 - 326*K4**2 - 32*K5**2 + 2148
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1297']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16787', 'vk6.16794', 'vk6.16818', 'vk6.16827', 'vk6.18157', 'vk6.18168', 'vk6.18491', 'vk6.18503', 'vk6.23199', 'vk6.23206', 'vk6.24616', 'vk6.25027', 'vk6.25042', 'vk6.35218', 'vk6.35247', 'vk6.36752', 'vk6.37171', 'vk6.37193', 'vk6.42695', 'vk6.42706', 'vk6.44333', 'vk6.44344', 'vk6.54980', 'vk6.55013', 'vk6.55964', 'vk6.55966', 'vk6.59368', 'vk6.59379', 'vk6.60502', 'vk6.65629', 'vk6.68169', 'vk6.68176']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4O5U6U3O6U1U4U5
R3 orbit {'O1O2O3U2O4O5U6U3O6U1U4U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U3O6U1U6O4O5U2
Gauss code of K* O1O2O3U1U4U5O4U2U3O6O5U6
Gauss code of -K* O1O2O3U4O5O4U1U2O6U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 1 3 -1],[ 2 0 -1 2 2 3 1],[ 1 1 0 1 1 1 0],[ 0 -2 -1 0 0 1 0],[-1 -2 -1 0 0 1 -1],[-3 -3 -1 -1 -1 0 -3],[ 1 -1 0 0 1 3 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -1 -1 -3 -3],[-1 1 0 0 -1 -1 -2],[ 0 1 0 0 -1 0 -2],[ 1 1 1 1 0 0 1],[ 1 3 1 0 0 0 -1],[ 2 3 2 2 -1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,1,1,3,3,0,1,1,2,1,0,2,0,-1,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,1,3,3,0,1,1,2,1,0,2,0,-1,1]
Phi of -K [-2,-1,-1,0,1,3,0,2,0,1,2,0,1,1,1,0,1,3,1,2,1]
Phi of K* [-3,-1,0,1,1,2,1,2,1,3,2,1,1,1,1,1,0,0,0,0,2]
Phi of -K* [-2,-1,-1,0,1,3,-1,1,2,2,3,0,1,1,1,0,1,3,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w
Inner characteristic polynomial t^6+34t^4+69t^2
Outer characteristic polynomial t^7+50t^5+118t^3+7t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial -1600*K1**2*K2**4 + 3360*K1**2*K2**3 - 6896*K1**2*K2**2 - 736*K1**2*K2*K4 + 4584*K1**2*K2 - 3112*K1**2 + 1984*K1*K2**3*K3 - 992*K1*K2**2*K3 - 224*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4752*K1*K2*K3 + 456*K1*K3*K4 + 8*K1*K4*K5 - 288*K2**6 + 160*K2**4*K4 - 2616*K2**4 - 816*K2**2*K3**2 - 8*K2**2*K4**2 + 1648*K2**2*K4 - 720*K2**2 + 328*K2*K3*K5 - 968*K3**2 - 326*K4**2 - 32*K5**2 + 2148
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact