Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1295

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,3,3,1,1,1,1,1,1,2,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1295']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+46t^5+32t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1295']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 128*K1**4*K2**2 + 1760*K1**4*K2 - 5568*K1**4 + 1152*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1472*K1**3*K3 + 512*K1**2*K2**3 - 5120*K1**2*K2**2 - 1216*K1**2*K2*K4 + 9816*K1**2*K2 - 1184*K1**2*K3**2 - 496*K1**2*K4**2 - 4336*K1**2 - 672*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 6752*K1*K2*K3 + 2088*K1*K3*K4 + 400*K1*K4*K5 - 408*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 928*K2**2*K4 - 4086*K2**2 + 40*K2*K3*K5 + 8*K2*K4*K6 - 2032*K3**2 - 794*K4**2 - 88*K5**2 - 2*K6**2 + 4360
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1295']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11481', 'vk6.11784', 'vk6.12803', 'vk6.13138', 'vk6.17032', 'vk6.17274', 'vk6.20861', 'vk6.20939', 'vk6.22270', 'vk6.22350', 'vk6.23759', 'vk6.28329', 'vk6.31246', 'vk6.31595', 'vk6.32819', 'vk6.35542', 'vk6.35991', 'vk6.39961', 'vk6.40106', 'vk6.42036', 'vk6.42953', 'vk6.43248', 'vk6.46500', 'vk6.46624', 'vk6.52234', 'vk6.53071', 'vk6.53387', 'vk6.55452', 'vk6.58864', 'vk6.59936', 'vk6.64409', 'vk6.69734']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2O4O5U6U1O6U4U3U5
R3 orbit {'O1O2O3U2O4O5U6U1O6U4U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O6U3U6O4O5U2
Gauss code of K* O1O2O3U4U5U2O5U1U3O6O4U6
Gauss code of -K* O1O2O3U4O5O4U1U3O6U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 3 -1],[ 2 0 0 2 0 2 2],[ 1 0 0 1 0 1 1],[-1 -2 -1 0 0 2 -1],[ 0 0 0 0 0 1 0],[-3 -2 -1 -2 -1 0 -3],[ 1 -2 -1 1 0 3 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -2 -1 -1 -3 -2],[-1 2 0 0 -1 -1 -2],[ 0 1 0 0 0 0 0],[ 1 1 1 0 0 1 0],[ 1 3 1 0 -1 0 -2],[ 2 2 2 0 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,2,1,1,3,2,0,1,1,2,0,0,0,-1,0,2]
Phi over symmetry [-3,-1,0,1,1,2,0,2,1,3,3,1,1,1,1,1,1,2,-1,-1,1]
Phi of -K [-2,-1,-1,0,1,3,-1,1,2,1,3,1,1,1,1,1,1,3,1,2,0]
Phi of K* [-3,-1,0,1,1,2,0,2,1,3,3,1,1,1,1,1,1,2,-1,-1,1]
Phi of -K* [-2,-1,-1,0,1,3,0,2,0,2,2,1,0,1,1,0,1,3,0,1,2]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+30t^4+11t^2
Outer characteristic polynomial t^7+46t^5+32t^3+5t
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -192*K1**6 - 128*K1**4*K2**2 + 1760*K1**4*K2 - 5568*K1**4 + 1152*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1472*K1**3*K3 + 512*K1**2*K2**3 - 5120*K1**2*K2**2 - 1216*K1**2*K2*K4 + 9816*K1**2*K2 - 1184*K1**2*K3**2 - 496*K1**2*K4**2 - 4336*K1**2 - 672*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 6752*K1*K2*K3 + 2088*K1*K3*K4 + 400*K1*K4*K5 - 408*K2**4 - 16*K2**2*K3**2 - 8*K2**2*K4**2 + 928*K2**2*K4 - 4086*K2**2 + 40*K2*K3*K5 + 8*K2*K4*K6 - 2032*K3**2 - 794*K4**2 - 88*K5**2 - 2*K6**2 + 4360
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact