Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1276

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,2,3,-1,0,1,1,1,1,0,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1276']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 + 5*K2 + 3*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.374', '6.446', '6.527', '6.1218', '6.1237', '6.1276', '6.1498', '6.1523', '6.1595', '6.1703', '6.1751', '6.1766', '6.1849', '6.1926']
Outer characteristic polynomial of the knot is: t^7+28t^5+45t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1276']
2-strand cable arrow polynomial of the knot is: -448*K1**6 - 448*K1**4*K2**2 + 2176*K1**4*K2 - 4528*K1**4 + 1568*K1**3*K2*K3 - 1696*K1**3*K3 - 192*K1**2*K2**4 + 1088*K1**2*K2**3 + 320*K1**2*K2**2*K4 - 7824*K1**2*K2**2 - 1600*K1**2*K2*K4 + 12056*K1**2*K2 - 720*K1**2*K3**2 - 80*K1**2*K4**2 - 6676*K1**2 + 864*K1*K2**3*K3 - 1568*K1*K2**2*K3 - 704*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 9608*K1*K2*K3 + 1464*K1*K3*K4 + 264*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1432*K2**4 - 96*K2**3*K6 - 400*K2**2*K3**2 - 128*K2**2*K4**2 + 2224*K2**2*K4 - 5690*K2**2 + 576*K2*K3*K5 + 72*K2*K4*K6 - 2624*K3**2 - 826*K4**2 - 188*K5**2 - 6*K6**2 + 5688
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1276']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4150', 'vk6.4181', 'vk6.5388', 'vk6.5419', 'vk6.7510', 'vk6.7535', 'vk6.9011', 'vk6.9042', 'vk6.12426', 'vk6.12459', 'vk6.13334', 'vk6.13559', 'vk6.13590', 'vk6.14266', 'vk6.14715', 'vk6.14738', 'vk6.15208', 'vk6.15869', 'vk6.15894', 'vk6.30839', 'vk6.30872', 'vk6.32023', 'vk6.32056', 'vk6.33060', 'vk6.33091', 'vk6.33863', 'vk6.34326', 'vk6.48492', 'vk6.50271', 'vk6.53522', 'vk6.53936', 'vk6.54259']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U3U5O6U4U6U2
R3 orbit {'O1O2O3U1O4O5U3U5O6U4U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U5O4U6U1O6O5U3
Gauss code of K* O1O2O3U4U3U5O4U1U6O5O6U2
Gauss code of -K* O1O2O3U2O4O5U4U3O6U5U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 -1 0 1 1],[ 2 0 2 1 1 1 0],[-1 -2 0 -2 0 1 1],[ 1 -1 2 0 2 1 1],[ 0 -1 0 -2 0 0 1],[-1 -1 -1 -1 0 0 0],[-1 0 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -2 -2],[-1 -1 0 0 0 -1 -1],[-1 -1 0 0 -1 -1 0],[ 0 0 0 1 0 -2 -1],[ 1 2 1 1 2 0 -1],[ 2 2 1 0 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,2,2,0,0,1,1,1,1,0,2,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,2,3,-1,0,1,1,1,1,0,-1,-1,0]
Phi of -K [-2,-1,0,1,1,1,0,1,1,2,3,-1,0,1,1,1,1,0,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,3,1,1,0,1,1,1,2,-1,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,0,1,2,2,1,1,2,1,0,0,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+20t^4+18t^2+1
Outer characteristic polynomial t^7+28t^5+45t^3+11t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 + 5*K2 + 3*K3 + 6
2-strand cable arrow polynomial -448*K1**6 - 448*K1**4*K2**2 + 2176*K1**4*K2 - 4528*K1**4 + 1568*K1**3*K2*K3 - 1696*K1**3*K3 - 192*K1**2*K2**4 + 1088*K1**2*K2**3 + 320*K1**2*K2**2*K4 - 7824*K1**2*K2**2 - 1600*K1**2*K2*K4 + 12056*K1**2*K2 - 720*K1**2*K3**2 - 80*K1**2*K4**2 - 6676*K1**2 + 864*K1*K2**3*K3 - 1568*K1*K2**2*K3 - 704*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 9608*K1*K2*K3 + 1464*K1*K3*K4 + 264*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1432*K2**4 - 96*K2**3*K6 - 400*K2**2*K3**2 - 128*K2**2*K4**2 + 2224*K2**2*K4 - 5690*K2**2 + 576*K2*K3*K5 + 72*K2*K4*K6 - 2624*K3**2 - 826*K4**2 - 188*K5**2 - 6*K6**2 + 5688
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact