Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1270

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,1,1,2,3,0,0,2,2,1,1,1,0,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1270']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+45t^5+50t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1270']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 1056*K1**4*K2 - 4032*K1**4 + 480*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1184*K1**3*K3 + 128*K1**2*K2**2*K4 - 3472*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 1120*K1**2*K2*K4 + 9480*K1**2*K2 - 992*K1**2*K3**2 - 448*K1**2*K4**2 - 6572*K1**2 - 384*K1*K2**2*K3 - 512*K1*K2*K3*K4 + 6984*K1*K2*K3 - 96*K1*K2*K4*K5 + 2832*K1*K3*K4 + 544*K1*K4*K5 + 24*K1*K5*K6 - 56*K2**4 - 48*K2**2*K3**2 - 112*K2**2*K4**2 + 1088*K2**2*K4 - 5300*K2**2 + 280*K2*K3*K5 + 112*K2*K4*K6 - 2848*K3**2 - 1358*K4**2 - 196*K5**2 - 28*K6**2 + 5652
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1270']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16561', 'vk6.16654', 'vk6.18146', 'vk6.18482', 'vk6.22960', 'vk6.23081', 'vk6.24601', 'vk6.25014', 'vk6.34961', 'vk6.35082', 'vk6.36736', 'vk6.37155', 'vk6.42530', 'vk6.42641', 'vk6.44004', 'vk6.44316', 'vk6.54792', 'vk6.54880', 'vk6.55959', 'vk6.56260', 'vk6.59220', 'vk6.59302', 'vk6.60494', 'vk6.60860', 'vk6.64774', 'vk6.64839', 'vk6.65617', 'vk6.65924', 'vk6.68072', 'vk6.68137', 'vk6.68688', 'vk6.68899']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U2U5O6U4U3U6
R3 orbit {'O1O2O3U1O4O5U2U5O6U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O4U6U2O6O5U3
Gauss code of K* O1O2O3U4U5U2O4U1U6O5O6U3
Gauss code of -K* O1O2O3U1O4O5U4U3O6U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 1 0 1 2],[ 2 0 1 2 1 1 1],[ 2 -1 0 3 2 1 2],[-1 -2 -3 0 0 0 2],[ 0 -1 -2 0 0 0 1],[-1 -1 -1 0 0 0 0],[-2 -1 -2 -2 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -2 -1 -1 -2],[-1 0 0 0 0 -1 -1],[-1 2 0 0 0 -2 -3],[ 0 1 0 0 0 -1 -2],[ 2 1 1 2 1 0 1],[ 2 2 1 3 2 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,2,1,1,2,0,0,1,1,0,2,3,1,2,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,1,1,2,3,0,0,2,2,1,1,1,0,-1,1]
Phi of -K [-2,-2,0,1,1,2,-1,1,1,2,3,0,0,2,2,1,1,1,0,-1,1]
Phi of K* [-2,-1,-1,0,2,2,-1,1,1,2,3,0,1,0,1,1,2,2,0,1,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,2,1,3,2,1,1,2,1,0,0,1,0,0,2]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+31t^4+17t^2+1
Outer characteristic polynomial t^7+45t^5+50t^3+8t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -64*K1**6 + 1056*K1**4*K2 - 4032*K1**4 + 480*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1184*K1**3*K3 + 128*K1**2*K2**2*K4 - 3472*K1**2*K2**2 + 96*K1**2*K2*K4**2 - 1120*K1**2*K2*K4 + 9480*K1**2*K2 - 992*K1**2*K3**2 - 448*K1**2*K4**2 - 6572*K1**2 - 384*K1*K2**2*K3 - 512*K1*K2*K3*K4 + 6984*K1*K2*K3 - 96*K1*K2*K4*K5 + 2832*K1*K3*K4 + 544*K1*K4*K5 + 24*K1*K5*K6 - 56*K2**4 - 48*K2**2*K3**2 - 112*K2**2*K4**2 + 1088*K2**2*K4 - 5300*K2**2 + 280*K2*K3*K5 + 112*K2*K4*K6 - 2848*K3**2 - 1358*K4**2 - 196*K5**2 - 28*K6**2 + 5652
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact