Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1269

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,0,1,2,3,0,0,2,2,0,1,0,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1269']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+49t^5+47t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1269']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 480*K1**4*K2 - 3344*K1**4 + 352*K1**3*K2*K3 + 32*K1**3*K3*K4 - 480*K1**3*K3 + 384*K1**2*K2**3 - 5856*K1**2*K2**2 - 992*K1**2*K2*K4 + 10592*K1**2*K2 - 464*K1**2*K3**2 - 128*K1**2*K4**2 - 6908*K1**2 + 96*K1*K2**3*K3 - 608*K1*K2**2*K3 - 96*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7888*K1*K2*K3 + 1776*K1*K3*K4 + 192*K1*K4*K5 - 792*K2**4 - 240*K2**2*K3**2 - 16*K2**2*K4**2 + 1440*K2**2*K4 - 5396*K2**2 + 352*K2*K3*K5 + 32*K2*K4*K6 - 2616*K3**2 - 998*K4**2 - 156*K5**2 - 12*K6**2 + 5740
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1269']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16501', 'vk6.16594', 'vk6.18098', 'vk6.18436', 'vk6.22928', 'vk6.23025', 'vk6.24545', 'vk6.24964', 'vk6.34909', 'vk6.35018', 'vk6.36680', 'vk6.37104', 'vk6.42474', 'vk6.42587', 'vk6.43956', 'vk6.44273', 'vk6.54728', 'vk6.54825', 'vk6.55922', 'vk6.56216', 'vk6.59188', 'vk6.59253', 'vk6.60448', 'vk6.60811', 'vk6.64748', 'vk6.64807', 'vk6.65564', 'vk6.65876', 'vk6.68040', 'vk6.68105', 'vk6.68642', 'vk6.68857']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1O4O5U2U5O6U3U4U6
R3 orbit {'O1O2O3U1O4O5U2U5O6U3U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U1O4U6U2O6O5U3
Gauss code of K* O1O2O3U4U5U1O4U2U6O5O6U3
Gauss code of -K* O1O2O3U1O4O5U4U2O6U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 0 1 1 2],[ 2 0 1 2 2 1 1],[ 2 -1 0 2 3 1 2],[ 0 -2 -2 0 1 0 2],[-1 -2 -3 -1 0 0 1],[-1 -1 -1 0 0 0 0],[-2 -1 -2 -2 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -1 -2 -1 -2],[-1 0 0 0 0 -1 -1],[-1 1 0 0 -1 -2 -3],[ 0 2 0 1 0 -2 -2],[ 2 1 1 2 2 0 1],[ 2 2 1 3 2 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,1,2,1,2,0,0,1,1,1,2,3,2,2,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,0,1,2,3,0,0,2,2,0,1,0,0,0,1]
Phi of -K [-2,-2,0,1,1,2,-1,0,1,2,3,0,0,2,2,0,1,0,0,0,1]
Phi of K* [-2,-1,-1,0,2,2,0,1,0,2,3,0,0,0,1,1,2,2,0,0,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,2,1,3,2,2,1,2,1,0,1,2,0,0,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+35t^4+20t^2+1
Outer characteristic polynomial t^7+49t^5+47t^3+8t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -192*K1**4*K2**2 + 480*K1**4*K2 - 3344*K1**4 + 352*K1**3*K2*K3 + 32*K1**3*K3*K4 - 480*K1**3*K3 + 384*K1**2*K2**3 - 5856*K1**2*K2**2 - 992*K1**2*K2*K4 + 10592*K1**2*K2 - 464*K1**2*K3**2 - 128*K1**2*K4**2 - 6908*K1**2 + 96*K1*K2**3*K3 - 608*K1*K2**2*K3 - 96*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7888*K1*K2*K3 + 1776*K1*K3*K4 + 192*K1*K4*K5 - 792*K2**4 - 240*K2**2*K3**2 - 16*K2**2*K4**2 + 1440*K2**2*K4 - 5396*K2**2 + 352*K2*K3*K5 + 32*K2*K4*K6 - 2616*K3**2 - 998*K4**2 - 156*K5**2 - 12*K6**2 + 5740
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}]]
If K is slice False
Contact