Gauss code |
O1O2O3O4U5U3U4O6O5U1U2U6 |
R3 orbit |
{'O1O2O3O4U5U3U4O6O5U1U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U4U1O5O6O4U5U6U2U3 |
Gauss code of -K* |
O1O2O3U4U1O5O6O4U5U6U2U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 2 -1 1],[ 2 0 1 0 2 0 1],[ 0 -1 0 0 2 -2 0],[ 0 0 0 0 1 -1 -1],[-2 -2 -2 -1 0 -2 -1],[ 1 0 2 1 2 0 1],[-1 -1 0 1 1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -2 -2],[-1 1 0 1 0 -1 -1],[ 0 1 -1 0 0 -1 0],[ 0 2 0 0 0 -2 -1],[ 1 2 1 1 2 0 0],[ 2 2 1 0 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,2,2,2,-1,0,1,1,0,1,0,2,1,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,0,1,1,2,1,2,1,2,0,-1,1,0,2,1] |
Phi of -K |
[-2,-1,0,0,1,2,1,1,2,2,2,-1,0,1,1,0,1,0,2,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,0,1,1,2,1,2,1,2,0,-1,1,0,2,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,0,1,1,2,1,2,1,2,0,-1,1,0,2,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+7w^3z^2-4w^3z+26w^2z+25w |
Inner characteristic polynomial |
t^6+23t^4+35t^2+4 |
Outer characteristic polynomial |
t^7+33t^5+97t^3+16t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 4*K2 + K4 + 4 |
2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 128*K1**4*K2 - 864*K1**4 + 256*K1**3*K2*K3 - 256*K1**3*K3 - 1536*K1**2*K2**4 + 2816*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 8000*K1**2*K2**2 - 192*K1**2*K2*K4 + 6976*K1**2*K2 - 512*K1**2*K3**2 - 4456*K1**2 + 3776*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1792*K1*K2**2*K3 - 768*K1*K2**2*K5 + 128*K1*K2*K3**3 - 256*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 7040*K1*K2*K3 + 576*K1*K3*K4 + 32*K1*K4*K5 + 16*K1*K5*K6 - 704*K2**6 - 384*K2**4*K3**2 - 32*K2**4*K4**2 + 512*K2**4*K4 - 3792*K2**4 + 384*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 2080*K2**2*K3**2 - 144*K2**2*K4**2 + 2416*K2**2*K4 - 128*K2**2*K5**2 - 48*K2**2*K6**2 - 1400*K2**2 + 960*K2*K3*K5 + 112*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 32*K3**2*K6 - 1664*K3**2 - 296*K4**2 - 88*K5**2 - 24*K6**2 - 2*K8**2 + 3384 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]] |
If K is slice |
False |