Gauss code |
O1O2O3O4U5U3U1O5O6U4U2U6 |
R3 orbit |
{'O1O2O3O4U5U3U1O5O6U4U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U1U4O5O6O4U3U6U2U5 |
Gauss code of -K* |
O1O2O3U1U4O5O6O4U3U6U2U5 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 0 0 1 -2 2],[ 1 0 1 0 1 0 2],[ 0 -1 0 0 1 -1 2],[ 0 0 0 0 0 0 1],[-1 -1 -1 0 0 -1 1],[ 2 0 1 0 1 0 2],[-2 -2 -2 -1 -1 -2 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -2 -2],[-1 1 0 0 -1 -1 -1],[ 0 1 0 0 0 0 0],[ 0 2 1 0 0 -1 -1],[ 1 2 1 0 1 0 0],[ 2 2 1 0 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,2,2,2,0,1,1,1,0,0,0,1,1,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,0,1,1,2,0,1,1,2,0,0,1,1,2,1] |
Phi of -K |
[-2,-1,0,0,1,2,1,1,2,2,2,0,1,1,1,0,0,0,1,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,0,1,1,2,0,1,1,2,0,0,1,1,2,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,0,1,1,2,0,1,1,2,0,0,1,1,2,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+18w^2z+33w |
Inner characteristic polynomial |
t^6+19t^4+7t^2 |
Outer characteristic polynomial |
t^7+29t^5+29t^3+4t |
Flat arrow polynomial |
4*K1**2*K2 - 8*K1**2 - 4*K1*K3 + 4*K2 + K4 + 4 |
2-strand cable arrow polynomial |
-1952*K1**4 - 448*K1**3*K3 - 2080*K1**2*K2**2 - 704*K1**2*K2*K4 + 5632*K1**2*K2 - 1088*K1**2*K3**2 - 4584*K1**2 + 256*K1*K2**2*K3*K4 - 256*K1*K2**2*K3 + 64*K1*K2*K3**3 - 320*K1*K2*K3*K4 - 320*K1*K2*K3*K6 + 6080*K1*K2*K3 + 2048*K1*K3*K4 + 48*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 64*K2**4*K4 - 272*K2**4 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 512*K2**2*K3**2 - 288*K2**2*K4**2 + 1152*K2**2*K4 - 48*K2**2*K6**2 - 3984*K2**2 + 608*K2*K3*K5 + 288*K2*K4*K6 + 16*K2*K6*K8 - 32*K3**4 + 64*K3**2*K6 - 2440*K3**2 - 944*K4**2 - 96*K5**2 - 64*K6**2 - 2*K8**2 + 4112 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]] |
If K is slice |
False |