Gauss code |
O1O2O3O4O5O6U3U6U4U5U1U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U6U4U5U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U6U2U3U1U4 |
Gauss code of K* |
O1O2O3O4O5O6U5U6U1U3U4U2 |
Gauss code of -K* |
O1O2O3O4O5O6U5U3U4U6U1U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -3 0 2 1],[ 1 0 1 -3 0 2 1],[-1 -1 0 -3 0 2 1],[ 3 3 3 0 2 3 1],[ 0 0 0 -2 0 1 0],[-2 -2 -2 -3 -1 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 0 -1 -1],[-1 2 1 0 0 -1 -3],[ 0 1 0 0 0 0 -2],[ 1 2 1 1 0 0 -3],[ 3 3 1 3 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,2,1,2,3,1,0,1,1,0,1,3,0,2,3] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,1,1,3,2,1,1,1,1,1,1,1,-1,-1,1] |
Phi of -K |
[-3,-1,0,1,1,2,-1,1,1,3,2,1,1,1,1,1,1,1,-1,-1,1] |
Phi of K* |
[-2,-1,-1,0,1,3,-1,1,1,1,2,1,1,1,1,1,1,3,1,1,-1] |
Phi of -K* |
[-3,-1,0,1,1,2,3,2,1,3,3,0,1,1,2,0,0,1,-1,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+44t^4+30t^2+1 |
Outer characteristic polynomial |
t^7+60t^5+81t^3+10t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-512*K1**6 - 1536*K1**4*K2**2 + 2624*K1**4*K2 - 3904*K1**4 + 1664*K1**3*K2*K3 - 672*K1**3*K3 + 384*K1**2*K2**5 - 3456*K1**2*K2**4 + 5728*K1**2*K2**3 - 512*K1**2*K2**2*K3**2 + 448*K1**2*K2**2*K4 - 12752*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 1088*K1**2*K2*K4 + 9840*K1**2*K2 - 768*K1**2*K3**2 - 128*K1**2*K4**2 - 2740*K1**2 + 256*K1*K2**5*K3 - 640*K1*K2**4*K3 - 128*K1*K2**4*K5 + 4640*K1*K2**3*K3 + 608*K1*K2**2*K3*K4 - 2848*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 704*K1*K2**2*K5 + 64*K1*K2*K3**3 - 480*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7944*K1*K2*K3 + 952*K1*K3*K4 + 128*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1600*K2**6 - 128*K2**5*K6 - 704*K2**4*K3**2 - 64*K2**4*K4**2 + 1632*K2**4*K4 - 4336*K2**4 + 416*K2**3*K3*K5 + 64*K2**3*K4*K6 - 192*K2**3*K6 + 64*K2**2*K3**2*K4 - 1744*K2**2*K3**2 - 32*K2**2*K3*K7 - 504*K2**2*K4**2 + 3040*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 730*K2**2 - 32*K2*K3**2*K4 + 696*K2*K3*K5 + 136*K2*K4*K6 - 1160*K3**2 - 410*K4**2 - 60*K5**2 - 6*K6**2 + 2976 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |