Gauss code |
O1O2O3O4U3U5U4O5O6U1U6U2 |
R3 orbit |
{'O1O2O3O4U3U5U4O5O6U1U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3U2U4O5O4O6U5U6U1U3 |
Gauss code of -K* |
O1O2O3U2U4O5O4O6U5U6U1U3 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 -1 2 -1 1],[ 2 0 2 -1 2 1 1],[-1 -2 0 -1 2 -2 0],[ 1 1 1 0 1 0 0],[-2 -2 -2 -1 0 -2 0],[ 1 -1 2 0 2 0 1],[-1 -1 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -2 -2],[-1 0 0 0 0 -1 -1],[-1 2 0 0 -1 -2 -2],[ 1 1 0 1 0 0 1],[ 1 2 1 2 0 0 -1],[ 2 2 1 2 -1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,2,1,2,2,0,0,1,1,1,2,2,0,-1,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,1,2,2,0,0,1,1,1,2,2,0,0,2] |
Phi of -K |
[-2,-1,-1,1,1,2,0,2,1,2,2,0,0,1,1,1,2,2,0,-1,1] |
Phi of K* |
[-2,-1,-1,1,1,2,-1,1,1,2,2,0,0,1,1,1,2,2,0,0,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,1,1,2,2,0,0,1,1,1,2,2,0,0,2] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^6+26t^4+39t^2+4 |
Outer characteristic polynomial |
t^7+38t^5+65t^3+8t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 4*K1**2 - 8*K1*K2 - 4*K1*K3 - 2*K1 + 2*K2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
-1152*K1**4*K2**2 + 6656*K1**4*K2 - 9664*K1**4 - 768*K1**3*K2**2*K3 + 3072*K1**3*K2*K3 - 1664*K1**3*K3 - 256*K1**2*K2**4 + 3136*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 512*K1**2*K2**2*K4 - 14432*K1**2*K2**2 + 768*K1**2*K2*K3**2 - 1408*K1**2*K2*K4 + 11680*K1**2*K2 - 2624*K1**2*K3**2 - 64*K1**2*K4**2 - 1248*K1**2 + 1344*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 3456*K1*K2**2*K3 - 768*K1*K2**2*K5 + 256*K1*K2*K3**3 - 768*K1*K2*K3*K4 - 256*K1*K2*K3*K6 + 11120*K1*K2*K3 + 2336*K1*K3*K4 + 256*K1*K4*K5 + 48*K1*K5*K6 - 64*K2**6 - 32*K2**4*K4**2 + 256*K2**4*K4 - 2176*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 192*K2**3*K6 - 1760*K2**2*K3**2 - 64*K2**2*K3*K7 - 352*K2**2*K4**2 + 2720*K2**2*K4 - 128*K2**2*K5**2 - 48*K2**2*K6**2 - 3708*K2**2 - 64*K2*K3**2*K4 + 1408*K2*K3*K5 + 384*K2*K4*K6 + 96*K2*K5*K7 + 16*K2*K6*K8 - 128*K3**4 + 64*K3**2*K6 - 2056*K3**2 - 812*K4**2 - 264*K5**2 - 84*K6**2 - 16*K7**2 - 2*K8**2 + 4028 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |