Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1236

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,1,1,0,1,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.782', '6.1236', '7.38129', '7.41463']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+22t^5+31t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1236', '6.1954', '7.38129', '7.41463']
2-strand cable arrow polynomial of the knot is: -2432*K1**4*K2**2 + 3968*K1**4*K2 - 4864*K1**4 + 1792*K1**3*K2*K3 - 832*K1**3*K3 - 2112*K1**2*K2**4 + 5568*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 12000*K1**2*K2**2 - 1152*K1**2*K2*K4 + 7784*K1**2*K2 - 480*K1**2*K3**2 - 812*K1**2 + 2432*K1*K2**3*K3 - 2016*K1*K2**2*K3 - 480*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 6128*K1*K2*K3 + 312*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 3160*K2**4 - 592*K2**2*K3**2 - 48*K2**2*K4**2 + 1816*K2**2*K4 - 294*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 524*K3**2 - 82*K4**2 - 8*K5**2 - 2*K6**2 + 1720
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1236']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.45', 'vk6.90', 'vk6.185', 'vk6.244', 'vk6.284', 'vk6.663', 'vk6.670', 'vk6.1242', 'vk6.1331', 'vk6.1388', 'vk6.1430', 'vk6.1914', 'vk6.2365', 'vk6.2419', 'vk6.2619', 'vk6.2967', 'vk6.10086', 'vk6.10097', 'vk6.14590', 'vk6.15810', 'vk6.16213', 'vk6.17768', 'vk6.24272', 'vk6.29831', 'vk6.33398', 'vk6.33467', 'vk6.33540', 'vk6.36578', 'vk6.43690', 'vk6.53713', 'vk6.53772', 'vk6.63295']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U4U5O6O5U1U2U6
R3 orbit {'O1O2O3O4U3U4U5O6O5U1U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U4O6O5U6U1U2
Gauss code of K* O1O2O3U4U3O5O6O4U5U6U1U2
Gauss code of -K* O1O2O3U4U1O4O5O6U5U6U2U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 1 1 1],[ 2 0 1 -1 1 2 1],[ 0 -1 0 -1 1 0 0],[ 1 1 1 0 1 1 0],[-1 -1 -1 -1 0 -1 0],[-1 -2 0 -1 1 0 1],[-1 -1 0 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 0 0 0 -1],[-1 -1 0 0 -1 -1 -1],[ 0 0 0 1 0 -1 -1],[ 1 1 0 1 1 0 1],[ 2 2 1 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,0,0,1,1,1,1,1,1,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,1,1,0,1,0,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,2,1,1,2,2,0,1,1,2,1,0,1,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,2,1,1,1,1,1,2,2,0,1,2]
Phi of -K* [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,1,1,0,1,0,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+25z+27
Enhanced Jones-Krushkal polynomial 6w^3z^2+25w^2z+27w
Inner characteristic polynomial t^6+14t^4+14t^2+1
Outer characteristic polynomial t^7+22t^5+31t^3+6t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -2432*K1**4*K2**2 + 3968*K1**4*K2 - 4864*K1**4 + 1792*K1**3*K2*K3 - 832*K1**3*K3 - 2112*K1**2*K2**4 + 5568*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 12000*K1**2*K2**2 - 1152*K1**2*K2*K4 + 7784*K1**2*K2 - 480*K1**2*K3**2 - 812*K1**2 + 2432*K1*K2**3*K3 - 2016*K1*K2**2*K3 - 480*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 6128*K1*K2*K3 + 312*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 3160*K2**4 - 592*K2**2*K3**2 - 48*K2**2*K4**2 + 1816*K2**2*K4 - 294*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 524*K3**2 - 82*K4**2 - 8*K5**2 - 2*K6**2 + 1720
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {2, 5}, {3, 4}, {1}]]
If K is slice False
Contact