Gauss code |
O1O2O3O4U3U2U4O5O6U5U1U6 |
R3 orbit |
{'O1O2O3O4U3U2U4O5O6U5U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U4U6O5O6U1U3U2 |
Gauss code of K* |
O1O2O3U4U5O4O6O5U6U2U1U3 |
Gauss code of -K* |
O1O2O3U1U3O4O5O6U4U6U5U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 -1 2 -1 2],[ 1 0 -1 -1 2 0 2],[ 1 1 0 0 2 0 0],[ 1 1 0 0 1 0 0],[-2 -2 -2 -1 0 0 0],[ 1 0 0 0 0 0 1],[-2 -2 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 -1 -1 -1 -1],[-2 0 0 0 0 -1 -2],[-2 0 0 -1 -2 0 -2],[ 1 0 1 0 0 0 1],[ 1 0 2 0 0 0 1],[ 1 1 0 0 0 0 0],[ 1 2 2 -1 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,1,1,1,1,0,0,0,1,2,1,2,0,2,0,0,-1,0,-1,0] |
Phi over symmetry |
[-2,-2,1,1,1,1,0,0,0,1,2,1,2,0,2,0,0,-1,0,-1,0] |
Phi of -K |
[-1,-1,-1,-1,2,2,-1,0,0,1,3,0,1,1,1,0,3,2,2,3,0] |
Phi of K* |
[-2,-2,1,1,1,1,0,1,1,2,3,1,3,3,2,-1,-1,0,0,0,0] |
Phi of -K* |
[-1,-1,-1,-1,2,2,-1,-1,0,2,2,0,0,0,1,0,0,2,1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-2t^2+4t |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^6+16t^4+32t^2+1 |
Outer characteristic polynomial |
t^7+28t^5+76t^3+8t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1*K2 - 4*K1*K3 - K1 + K3 + K4 |
2-strand cable arrow polynomial |
1792*K1**4*K2 - 2976*K1**4 - 384*K1**3*K2**2*K3 + 1536*K1**3*K2*K3 - 1088*K1**3*K3 - 128*K1**2*K2**4 + 1280*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 6672*K1**2*K2**2 + 768*K1**2*K2*K3**2 - 1024*K1**2*K2*K4 + 6864*K1**2*K2 - 2208*K1**2*K3**2 - 128*K1**2*K3*K5 - 32*K1**2*K4**2 - 3176*K1**2 + 1088*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2464*K1*K2**2*K3 - 448*K1*K2**2*K5 + 384*K1*K2*K3**3 - 832*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 8144*K1*K2*K3 - 192*K1*K2*K4*K5 + 2368*K1*K3*K4 + 192*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 - 32*K2**4*K4**2 + 192*K2**4*K4 - 1648*K2**4 + 64*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 2032*K2**2*K3**2 - 32*K2**2*K3*K7 - 304*K2**2*K4**2 - 32*K2**2*K4*K8 + 2080*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 2966*K2**2 - 224*K2*K3**2*K4 + 1472*K2*K3*K5 + 272*K2*K4*K6 + 48*K2*K5*K7 + 16*K2*K6*K8 - 256*K3**4 + 192*K3**2*K6 - 1972*K3**2 - 724*K4**2 - 220*K5**2 - 74*K6**2 - 8*K7**2 - 2*K8**2 + 3268 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |