Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1219

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,1,1,2,1,0,2,1,0,1,1,-1,0,2]
Flat knots (up to 7 crossings) with same phi are :['6.1219']
Arrow polynomial of the knot is: 8*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 3*K2 + K4 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1219']
Outer characteristic polynomial of the knot is: t^7+33t^5+78t^3+14t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1219']
2-strand cable arrow polynomial of the knot is: -640*K1**4*K2**2 + 896*K1**4*K2 - 1280*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 992*K1**3*K2*K3 - 288*K1**3*K3 - 256*K1**2*K2**4 + 1184*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 - 7424*K1**2*K2**2 - 864*K1**2*K2*K4 + 6160*K1**2*K2 - 416*K1**2*K3**2 - 4220*K1**2 + 2272*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 992*K1*K2**2*K3 - 576*K1*K2**2*K5 + 96*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8168*K1*K2*K3 - 160*K1*K2*K4*K5 + 1008*K1*K3*K4 + 56*K1*K4*K5 + 40*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2424*K2**4 + 224*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 - 2352*K2**2*K3**2 - 32*K2**2*K3*K7 - 400*K2**2*K4**2 - 32*K2**2*K4*K8 + 1984*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 2732*K2**2 - 128*K2*K3**2*K4 + 1368*K2*K3*K5 + 360*K2*K4*K6 + 8*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 48*K3**2*K6 - 2328*K3**2 - 646*K4**2 - 212*K5**2 - 92*K6**2 - 2*K8**2 + 3854
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1219']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4748', 'vk6.5075', 'vk6.6290', 'vk6.6729', 'vk6.8255', 'vk6.8704', 'vk6.9641', 'vk6.9956', 'vk6.20406', 'vk6.21763', 'vk6.27752', 'vk6.29282', 'vk6.39180', 'vk6.41416', 'vk6.45916', 'vk6.47549', 'vk6.48780', 'vk6.48991', 'vk6.49592', 'vk6.49795', 'vk6.50796', 'vk6.51011', 'vk6.51283', 'vk6.51478', 'vk6.57267', 'vk6.58492', 'vk6.61919', 'vk6.63020', 'vk6.66880', 'vk6.67758', 'vk6.69512', 'vk6.70226']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U1U4O5O6U2U5U6
R3 orbit {'O1O2O3O4U3U1U4O5O6U2U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U3O5O6U1U4U2
Gauss code of K* O1O2O3U4U5O6O4O5U2U6U1U3
Gauss code of -K* O1O2O3U1U2O4O5O6U4U6U3U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 -1 2 0 2],[ 2 0 2 0 2 1 1],[ 1 -2 0 -1 1 1 2],[ 1 0 1 0 1 0 0],[-2 -2 -1 -1 0 0 0],[ 0 -1 -1 0 0 0 1],[-2 -1 -2 0 0 -1 0]]
Primitive based matrix [[ 0 2 2 0 -1 -1 -2],[-2 0 0 0 -1 -1 -2],[-2 0 0 -1 0 -2 -1],[ 0 0 1 0 0 -1 -1],[ 1 1 0 0 0 1 0],[ 1 1 2 1 -1 0 -2],[ 2 2 1 1 0 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,1,1,2,0,0,1,1,2,1,0,2,1,0,1,1,-1,0,2]
Phi over symmetry [-2,-2,0,1,1,2,0,0,1,1,2,1,0,2,1,0,1,1,-1,0,2]
Phi of -K [-2,-1,-1,0,2,2,-1,1,1,2,3,1,0,2,1,1,2,3,2,1,0]
Phi of K* [-2,-2,0,1,1,2,0,1,1,3,3,2,2,2,2,0,1,1,-1,-1,1]
Phi of -K* [-2,-1,-1,0,2,2,0,2,1,1,2,1,0,0,1,1,2,1,1,0,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+19t^4+27t^2+1
Outer characteristic polynomial t^7+33t^5+78t^3+14t
Flat arrow polynomial 8*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 3*K2 + K4 + 3
2-strand cable arrow polynomial -640*K1**4*K2**2 + 896*K1**4*K2 - 1280*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 992*K1**3*K2*K3 - 288*K1**3*K3 - 256*K1**2*K2**4 + 1184*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 - 7424*K1**2*K2**2 - 864*K1**2*K2*K4 + 6160*K1**2*K2 - 416*K1**2*K3**2 - 4220*K1**2 + 2272*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 992*K1*K2**2*K3 - 576*K1*K2**2*K5 + 96*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8168*K1*K2*K3 - 160*K1*K2*K4*K5 + 1008*K1*K3*K4 + 56*K1*K4*K5 + 40*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2424*K2**4 + 224*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 - 2352*K2**2*K3**2 - 32*K2**2*K3*K7 - 400*K2**2*K4**2 - 32*K2**2*K4*K8 + 1984*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 2732*K2**2 - 128*K2*K3**2*K4 + 1368*K2*K3*K5 + 360*K2*K4*K6 + 8*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 48*K3**2*K6 - 2328*K3**2 - 646*K4**2 - 212*K5**2 - 92*K6**2 - 2*K8**2 + 3854
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact