Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1217

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,3,0,1,1,1,1,1,2,0,-2,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1217']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+34t^5+50t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1217']
2-strand cable arrow polynomial of the knot is: -2912*K1**4 - 256*K1**3*K3 + 192*K1**2*K2**3 - 3856*K1**2*K2**2 - 64*K1**2*K2*K4 + 6208*K1**2*K2 - 2004*K1**2 - 128*K1*K2**2*K3 + 3536*K1*K2*K3 + 16*K1*K3*K4 - 456*K2**4 + 360*K2**2*K4 - 1928*K2**2 - 732*K3**2 - 50*K4**2 + 2072
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1217']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20176', 'vk6.20184', 'vk6.20190', 'vk6.20194', 'vk6.21460', 'vk6.21468', 'vk6.27308', 'vk6.27324', 'vk6.27336', 'vk6.27344', 'vk6.28966', 'vk6.28982', 'vk6.28990', 'vk6.28994', 'vk6.38745', 'vk6.38761', 'vk6.38769', 'vk6.38777', 'vk6.40925', 'vk6.40941', 'vk6.47305', 'vk6.47313', 'vk6.47319', 'vk6.47327', 'vk6.57013', 'vk6.57017', 'vk6.57023', 'vk6.57031', 'vk6.62694', 'vk6.62702', 'vk6.70058', 'vk6.70062']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U1U2O5O6U4U6U5
R3 orbit {'O1O2O3O4U3U1U2O5O6U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U1O6O5U3U4U2
Gauss code of K* O1O2O3U4U5O6O5O4U2U3U1U6
Gauss code of -K* O1O2O3U2U1O4O5O6U3U6U4U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 1 1 1],[ 2 0 1 0 3 1 1],[ 0 -1 0 0 2 1 1],[ 1 0 0 0 1 1 1],[-1 -3 -2 -1 0 2 1],[-1 -1 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 2 1 -2 -1 -3],[-1 -2 0 0 -1 -1 -1],[-1 -1 0 0 -1 -1 -1],[ 0 2 1 1 0 0 -1],[ 1 1 1 1 0 0 0],[ 2 3 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-2,-1,2,1,3,0,1,1,1,1,1,1,0,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,3,0,1,1,1,1,1,2,0,-2,-1]
Phi of -K [-2,-1,0,1,1,1,1,1,0,2,2,1,1,1,1,-1,0,0,-2,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-2,0,0,1,2,1,-1,1,0,0,1,2,1,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,1,1,3,0,1,1,1,1,1,2,0,-2,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 7z^2+24z+21
Enhanced Jones-Krushkal polynomial -4w^4z^2+11w^3z^2+24w^2z+21w
Inner characteristic polynomial t^6+26t^4+17t^2+1
Outer characteristic polynomial t^7+34t^5+50t^3+9t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -2912*K1**4 - 256*K1**3*K3 + 192*K1**2*K2**3 - 3856*K1**2*K2**2 - 64*K1**2*K2*K4 + 6208*K1**2*K2 - 2004*K1**2 - 128*K1*K2**2*K3 + 3536*K1*K2*K3 + 16*K1*K3*K4 - 456*K2**4 + 360*K2**2*K4 - 1928*K2**2 - 732*K3**2 - 50*K4**2 + 2072
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact