Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,1,2,3,-1,2,1,0,1,1,1,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1216'] |
Arrow polynomial of the knot is: 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.324', '6.672', '6.953', '6.1196', '6.1215', '6.1216', '6.1699'] |
Outer characteristic polynomial of the knot is: t^7+37t^5+82t^3+12t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1216'] |
2-strand cable arrow polynomial of the knot is: -640*K1**4*K2**2 + 1152*K1**4*K2 - 1440*K1**4 + 256*K1**3*K2*K3 - 64*K1**3*K3 - 2368*K1**2*K2**4 + 4992*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 11232*K1**2*K2**2 - 480*K1**2*K2*K4 + 8336*K1**2*K2 - 96*K1**2*K3**2 - 4288*K1**2 + 2976*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 2144*K1*K2**2*K3 - 384*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6840*K1*K2*K3 + 296*K1*K3*K4 + 16*K1*K4*K5 - 864*K2**6 + 1184*K2**4*K4 - 5360*K2**4 - 160*K2**3*K6 - 1024*K2**2*K3**2 - 384*K2**2*K4**2 + 3416*K2**2*K4 - 830*K2**2 + 280*K2*K3*K5 + 56*K2*K4*K6 - 1140*K3**2 - 472*K4**2 - 36*K5**2 - 2*K6**2 + 3414 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1216'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20118', 'vk6.20122', 'vk6.21398', 'vk6.21406', 'vk6.27208', 'vk6.27216', 'vk6.28886', 'vk6.28890', 'vk6.38618', 'vk6.38626', 'vk6.40808', 'vk6.40824', 'vk6.45494', 'vk6.45510', 'vk6.47224', 'vk6.47232', 'vk6.56931', 'vk6.56939', 'vk6.58067', 'vk6.58083', 'vk6.61483', 'vk6.61499', 'vk6.62626', 'vk6.62634', 'vk6.66641', 'vk6.66645', 'vk6.67426', 'vk6.67434', 'vk6.69277', 'vk6.69285', 'vk6.70014', 'vk6.70018'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3U1U2O5O6U4U5U6 |
R3 orbit | {'O1O2O3O4U3U1U2O5O6U4U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6U1O5O6U3U4U2 |
Gauss code of K* | O1O2O3U4U5O6O4O5U2U3U1U6 |
Gauss code of -K* | O1O2O3U1U2O4O5O6U3U6U4U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 -1 1 0 2],[ 2 0 1 0 3 1 1],[ 0 -1 0 0 2 1 1],[ 1 0 0 0 1 1 1],[-1 -3 -2 -1 0 1 2],[ 0 -1 -1 -1 -1 0 1],[-2 -1 -1 -1 -2 -1 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 -2 -1 -1 -1 -1],[-1 2 0 1 -2 -1 -3],[ 0 1 -1 0 -1 -1 -1],[ 0 1 2 1 0 0 -1],[ 1 1 1 1 0 0 0],[ 2 1 3 1 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,2,1,1,1,1,-1,2,1,3,1,1,1,0,1,0] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,1,1,2,3,-1,2,1,0,1,1,1,0,1,1] |
Phi of -K | [-2,-1,0,0,1,2,1,1,1,0,3,0,1,1,2,1,2,1,-1,1,-1] |
Phi of K* | [-2,-1,0,0,1,2,-1,1,1,2,3,-1,2,1,0,1,1,1,0,1,1] |
Phi of -K* | [-2,-1,0,0,1,2,0,1,1,3,1,0,1,1,1,1,2,1,-1,1,2] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2-4w^3z+26w^2z+25w |
Inner characteristic polynomial | t^6+27t^4+20t^2 |
Outer characteristic polynomial | t^7+37t^5+82t^3+12t |
Flat arrow polynomial | 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial | -640*K1**4*K2**2 + 1152*K1**4*K2 - 1440*K1**4 + 256*K1**3*K2*K3 - 64*K1**3*K3 - 2368*K1**2*K2**4 + 4992*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 11232*K1**2*K2**2 - 480*K1**2*K2*K4 + 8336*K1**2*K2 - 96*K1**2*K3**2 - 4288*K1**2 + 2976*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 2144*K1*K2**2*K3 - 384*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6840*K1*K2*K3 + 296*K1*K3*K4 + 16*K1*K4*K5 - 864*K2**6 + 1184*K2**4*K4 - 5360*K2**4 - 160*K2**3*K6 - 1024*K2**2*K3**2 - 384*K2**2*K4**2 + 3416*K2**2*K4 - 830*K2**2 + 280*K2*K3*K5 + 56*K2*K4*K6 - 1140*K3**2 - 472*K4**2 - 36*K5**2 - 2*K6**2 + 3414 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice | True |