Gauss code |
O1O2O3O4U2U5U4O6O5U1U3U6 |
R3 orbit |
{'O1O2O3O4U2U5U4O6O5U1U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U2U4O6O5U1U6U3 |
Gauss code of K* |
O1O2O3U4U2O5O6O4U5U1U6U3 |
Gauss code of -K* |
O1O2O3U4U1O5O4O6U5U2U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 1 2 0 1],[ 2 0 -1 2 2 1 1],[ 2 1 0 2 1 1 1],[-1 -2 -2 0 1 -2 0],[-2 -2 -1 -1 0 -2 -1],[ 0 -1 -1 2 2 0 1],[-1 -1 -1 0 1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -2 -2],[-2 0 -1 -1 -2 -1 -2],[-1 1 0 0 -1 -1 -1],[-1 1 0 0 -2 -2 -2],[ 0 2 1 2 0 -1 -1],[ 2 1 1 2 1 0 1],[ 2 2 1 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,2,2,1,1,2,1,2,0,1,1,1,2,2,2,1,1,-1] |
Phi over symmetry |
[-2,-2,0,1,1,2,-1,1,1,2,2,1,1,2,1,1,2,2,0,1,1] |
Phi of -K |
[-2,-2,0,1,1,2,-1,1,1,2,3,1,1,2,2,-1,0,0,0,0,0] |
Phi of K* |
[-2,-1,-1,0,2,2,0,0,0,2,3,0,-1,1,1,0,2,2,1,1,-1] |
Phi of -K* |
[-2,-2,0,1,1,2,-1,1,1,2,2,1,1,2,1,1,2,2,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2-2w^3z+26w^2z+29w |
Inner characteristic polynomial |
t^6+29t^4+13t^2+1 |
Outer characteristic polynomial |
t^7+43t^5+56t^3+10t |
Flat arrow polynomial |
4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 - 2*K2**2 + 3*K2 + 2*K3 + K4 + 5 |
2-strand cable arrow polynomial |
32*K1**4*K2 - 176*K1**4 + 160*K1**3*K2*K3 - 448*K1**3*K3 + 64*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2256*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 544*K1**2*K2*K4 + 5840*K1**2*K2 - 560*K1**2*K3**2 - 64*K1**2*K3*K5 - 16*K1**2*K4**2 - 6852*K1**2 + 544*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1504*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 192*K1*K2**2*K5 - 640*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7376*K1*K2*K3 + 2208*K1*K3*K4 + 400*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 992*K2**2*K3**2 + 32*K2**2*K4**3 - 368*K2**2*K4**2 + 2560*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 5572*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1072*K2*K3*K5 - 32*K2*K4**2*K6 + 312*K2*K4*K6 + 40*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 + 104*K3**2*K6 - 3320*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1590*K4**2 - 372*K5**2 - 124*K6**2 - 16*K7**2 - 2*K8**2 + 5662 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
False |