Gauss code |
O1O2O3O4O5O6U3U5U6U4U1U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U5U6U4U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U6U3U1U2U4 |
Gauss code of K* |
O1O2O3O4O5O6U5U6U1U4U2U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U5U3U6U1U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -3 1 0 2],[ 1 0 1 -3 1 0 2],[-1 -1 0 -3 1 0 2],[ 3 3 3 0 3 1 2],[-1 -1 -1 -3 0 -1 1],[ 0 0 0 -1 1 0 1],[-2 -2 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 -1 -2 -1 -2 -2],[-1 1 0 -1 -1 -1 -3],[-1 2 1 0 0 -1 -3],[ 0 1 1 0 0 0 -1],[ 1 2 1 1 0 0 -3],[ 3 2 3 3 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,1,2,1,2,2,1,1,1,3,0,1,3,0,1,3] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,2,1,1,3,1,1,1,1,0,1,1,1,0,-1] |
Phi of -K |
[-3,-1,0,1,1,2,-1,2,1,1,3,1,1,1,1,0,1,1,1,0,-1] |
Phi of K* |
[-2,-1,-1,0,1,3,-1,0,1,1,3,1,1,1,1,0,1,1,1,2,-1] |
Phi of -K* |
[-3,-1,0,1,1,2,3,1,3,3,2,0,1,1,2,0,1,1,1,2,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w |
Inner characteristic polynomial |
t^6+46t^4+31t^2 |
Outer characteristic polynomial |
t^7+62t^5+86t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-896*K1**4*K2**2 + 1152*K1**4*K2 - 3200*K1**4 + 512*K1**3*K2**3*K3 + 1024*K1**3*K2*K3 - 320*K1**3*K3 + 384*K1**2*K2**5 - 3904*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 5632*K1**2*K2**3 - 512*K1**2*K2**2*K3**2 - 11440*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 8008*K1**2*K2 - 736*K1**2*K3**2 - 128*K1**2*K4**2 - 1980*K1**2 + 640*K1*K2**5*K3 - 768*K1*K2**4*K3 - 256*K1*K2**4*K5 + 4896*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 2080*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 352*K1*K2**2*K5 + 96*K1*K2*K3**3 - 384*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6728*K1*K2*K3 + 720*K1*K3*K4 + 168*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1600*K2**6 - 128*K2**5*K6 - 704*K2**4*K3**2 - 64*K2**4*K4**2 + 1440*K2**4*K4 - 4144*K2**4 + 320*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 + 64*K2**2*K3**2*K4 - 1776*K2**2*K3**2 - 32*K2**2*K3*K7 - 408*K2**2*K4**2 + 2488*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 + 134*K2**2 - 32*K2*K3**2*K4 + 576*K2*K3*K5 + 152*K2*K4*K6 - 972*K3**2 - 338*K4**2 - 48*K5**2 - 14*K6**2 + 2360 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice |
False |