Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1200

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,1,1,2,2,1,1,2,1,1,0,1,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1200']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+47t^5+37t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1200']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 224*K1**4*K2 - 608*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 + 384*K1**2*K2**5 - 1984*K1**2*K2**4 - 896*K1**2*K2**3*K4 + 3104*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 6592*K1**2*K2**2 - 704*K1**2*K2*K4 + 5464*K1**2*K2 - 160*K1**2*K3**2 - 160*K1**2*K4**2 - 3656*K1**2 + 2304*K1*K2**3*K3 + 704*K1*K2**2*K3*K4 - 1024*K1*K2**2*K3 + 32*K1*K2*K3**3 - 64*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4312*K1*K2*K3 + 912*K1*K3*K4 + 144*K1*K4*K5 - 288*K2**6 + 576*K2**4*K4 - 2136*K2**4 - 832*K2**2*K3**2 - 464*K2**2*K4**2 + 1368*K2**2*K4 - 1230*K2**2 + 192*K2*K3*K5 + 72*K2*K4*K6 - 1012*K3**2 - 550*K4**2 - 52*K5**2 - 2*K6**2 + 2652
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1200']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10133', 'vk6.10186', 'vk6.10329', 'vk6.10420', 'vk6.17664', 'vk6.17713', 'vk6.24231', 'vk6.24280', 'vk6.29916', 'vk6.29959', 'vk6.30022', 'vk6.30075', 'vk6.36495', 'vk6.36591', 'vk6.43592', 'vk6.43704', 'vk6.51621', 'vk6.51658', 'vk6.51707', 'vk6.51726', 'vk6.55694', 'vk6.55753', 'vk6.60264', 'vk6.60328', 'vk6.63338', 'vk6.63367', 'vk6.63389', 'vk6.63405', 'vk6.65404', 'vk6.65445', 'vk6.68544', 'vk6.68577']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U3U5O6O5U1U4U6
R3 orbit {'O1O2O3O4U2U3U5O6O5U1U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U4O6O5U6U2U3
Gauss code of K* O1O2O3U4U3O5O6O4U5U1U2U6
Gauss code of -K* O1O2O3U4U1O4O5O6U2U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 0 2 1 1],[ 2 0 -1 1 3 2 1],[ 2 1 0 1 2 2 1],[ 0 -1 -1 0 1 0 1],[-2 -3 -2 -1 0 -2 0],[-1 -2 -2 0 2 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 0 -2 -2],[ 0 1 1 0 0 -1 -1],[ 2 2 1 2 1 0 1],[ 2 3 1 2 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,2,1,2,3,1,1,1,1,0,2,2,1,1,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,1,1,2,2,1,1,2,1,1,0,1,-1,-1,1]
Phi of -K [-2,-2,0,1,1,2,-1,1,1,2,2,1,1,2,1,1,0,1,-1,-1,1]
Phi of K* [-2,-1,-1,0,2,2,-1,1,1,1,2,1,1,1,1,0,2,2,1,1,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,1,1,2,3,1,1,2,2,1,0,1,-1,0,2]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w
Inner characteristic polynomial t^6+33t^4+12t^2
Outer characteristic polynomial t^7+47t^5+37t^3+7t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -192*K1**4*K2**2 + 224*K1**4*K2 - 608*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 + 384*K1**2*K2**5 - 1984*K1**2*K2**4 - 896*K1**2*K2**3*K4 + 3104*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 6592*K1**2*K2**2 - 704*K1**2*K2*K4 + 5464*K1**2*K2 - 160*K1**2*K3**2 - 160*K1**2*K4**2 - 3656*K1**2 + 2304*K1*K2**3*K3 + 704*K1*K2**2*K3*K4 - 1024*K1*K2**2*K3 + 32*K1*K2*K3**3 - 64*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4312*K1*K2*K3 + 912*K1*K3*K4 + 144*K1*K4*K5 - 288*K2**6 + 576*K2**4*K4 - 2136*K2**4 - 832*K2**2*K3**2 - 464*K2**2*K4**2 + 1368*K2**2*K4 - 1230*K2**2 + 192*K2*K3*K5 + 72*K2*K4*K6 - 1012*K3**2 - 550*K4**2 - 52*K5**2 - 2*K6**2 + 2652
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact