Gauss code |
O1O2O3O4O5O6U1U2U6U5U4U3 |
R3 orbit |
{'O1O2O3O4O5O6U1U2U6U5U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U3U2U1U5U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U4U3U2U1U5U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 -3 2 2 2 2],[ 5 0 1 5 4 3 2],[ 3 -1 0 4 3 2 1],[-2 -5 -4 0 0 0 0],[-2 -4 -3 0 0 0 0],[-2 -3 -2 0 0 0 0],[-2 -2 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 2 2 -3 -5],[-2 0 0 0 0 -1 -2],[-2 0 0 0 0 -2 -3],[-2 0 0 0 0 -3 -4],[-2 0 0 0 0 -4 -5],[ 3 1 2 3 4 0 -1],[ 5 2 3 4 5 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,-2,3,5,0,0,0,1,2,0,0,2,3,0,3,4,4,5,1] |
Phi over symmetry |
[-5,-3,2,2,2,2,1,2,3,4,5,1,2,3,4,0,0,0,0,0,0] |
Phi of -K |
[-5,-3,2,2,2,2,1,2,3,4,5,1,2,3,4,0,0,0,0,0,0] |
Phi of K* |
[-2,-2,-2,-2,3,5,0,0,0,1,2,0,0,2,3,0,3,4,4,5,1] |
Phi of -K* |
[-5,-3,2,2,2,2,1,2,3,4,5,1,2,3,4,0,0,0,0,0,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5+t^3-4t^2 |
Normalized Jones-Krushkal polynomial |
z+3 |
Enhanced Jones-Krushkal polynomial |
-16w^5z+16w^4z+w^2z+3w |
Inner characteristic polynomial |
t^6+85t^4+20t^2 |
Outer characteristic polynomial |
t^7+135t^5+200t^3 |
Flat arrow polynomial |
-2*K1*K4 + K3 + K5 + 1 |
2-strand cable arrow polynomial |
160*K1*K2*K3 - 2*K10**2 + 8*K10*K2*K8 - 128*K2**4 + 256*K2**3*K3*K5 - 448*K2**2*K3**2 - 320*K2**2*K5**2 - 8*K2**2*K8**2 - 196*K2**2 + 896*K2*K3*K5 + 96*K2*K5*K7 + 8*K2*K6*K8 - 328*K3**2 + 16*K3*K5*K8 - 328*K5**2 - 2*K6**2 - 12*K8**2 + 330 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |