Gauss code |
O1O2O3O4U2U3U4O5O6U5U1U6 |
R3 orbit |
{'O1O2O3O4U2U3U4O5O6U5U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U4U6O5O6U1U2U3 |
Gauss code of K* |
O1O2O3U4U5O4O6O5U6U1U2U3 |
Gauss code of -K* |
O1O2O3U1U3O4O5O6U4U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 0 2 -1 2],[ 1 0 -2 0 2 0 2],[ 2 2 0 1 2 0 0],[ 0 0 -1 0 1 0 0],[-2 -2 -2 -1 0 0 0],[ 1 0 0 0 0 0 1],[-2 -2 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 -1 -1 -2],[-2 0 0 0 -1 -2 0],[-2 0 0 -1 0 -2 -2],[ 0 0 1 0 0 0 -1],[ 1 1 0 0 0 0 0],[ 1 2 2 0 0 0 -2],[ 2 0 2 1 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,1,1,2,0,0,1,2,0,1,0,2,2,0,0,1,0,0,2] |
Phi over symmetry |
[-2,-2,0,1,1,2,0,0,1,2,0,1,0,2,2,0,0,1,0,0,2] |
Phi of -K |
[-2,-1,-1,0,2,2,-1,1,1,2,4,0,1,1,1,1,3,2,1,2,0] |
Phi of K* |
[-2,-2,0,1,1,2,0,1,1,3,2,2,1,2,4,1,1,1,0,-1,1] |
Phi of -K* |
[-2,-1,-1,0,2,2,0,2,1,0,2,0,0,1,0,0,2,2,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
3z^2+8z+5 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+9w^3z^2-10w^3z+18w^2z+5w |
Inner characteristic polynomial |
t^6+19t^4+38t^2 |
Outer characteristic polynomial |
t^7+33t^5+91t^3+6t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 + 4*K1**2 - 4*K1*K2 - 2*K1*K3 - 4*K1 - K2 |
2-strand cable arrow polynomial |
1920*K1**2*K2**5 - 5248*K1**2*K2**4 - 640*K1**2*K2**3*K4 + 4320*K1**2*K2**3 - 5600*K1**2*K2**2 - 384*K1**2*K2*K4 + 2800*K1**2*K2 - 1472*K1**2 + 896*K1*K2**5*K3 - 1024*K1*K2**4*K3 - 256*K1*K2**4*K5 - 128*K1*K2**3*K3*K4 + 4288*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 960*K1*K2**2*K3 - 192*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 3232*K1*K2*K3 + 128*K1*K3*K4 - 128*K2**8 + 256*K2**6*K4 - 2304*K2**6 - 896*K2**4*K3**2 - 192*K2**4*K4**2 + 1696*K2**4*K4 - 1888*K2**4 + 480*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 - 1152*K2**2*K3**2 - 240*K2**2*K4**2 + 1296*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 + 496*K2**2 + 384*K2*K3*K5 + 56*K2*K4*K6 - 496*K3**2 - 130*K4**2 - 32*K5**2 - 8*K6**2 + 1064 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{6}, {1, 5}, {2, 4}, {3}]] |
If K is slice |
False |