Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1188

Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,-2,0,2,3,3,0,3,1,2,2,1,2,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1188']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+45t^5+91t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1188']
2-strand cable arrow polynomial of the knot is: -320*K1**4 + 448*K1**3*K2*K3 - 288*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 1472*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 224*K1**2*K2*K4 + 2744*K1**2*K2 - 1888*K1**2*K3**2 - 64*K1**2*K3*K5 - 4240*K1**2 + 288*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 + 544*K1*K2*K3**3 - 96*K1*K2*K3*K4 - 256*K1*K2*K3*K6 + 6272*K1*K2*K3 - 32*K1*K3**2*K5 + 2392*K1*K3*K4 + 192*K1*K4*K5 + 40*K1*K5*K6 - 144*K2**4 - 992*K2**2*K3**2 - 80*K2**2*K4**2 + 456*K2**2*K4 - 3236*K2**2 - 288*K2*K3**2*K4 + 784*K2*K3*K5 + 160*K2*K4*K6 - 320*K3**4 + 304*K3**2*K6 - 2816*K3**2 - 868*K4**2 - 264*K5**2 - 92*K6**2 + 3802
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1188']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4659', 'vk6.4948', 'vk6.6113', 'vk6.6602', 'vk6.8126', 'vk6.8530', 'vk6.9512', 'vk6.9869', 'vk6.20373', 'vk6.21714', 'vk6.27685', 'vk6.29229', 'vk6.39125', 'vk6.41379', 'vk6.45869', 'vk6.47530', 'vk6.48691', 'vk6.48896', 'vk6.49447', 'vk6.49668', 'vk6.50707', 'vk6.50908', 'vk6.51194', 'vk6.51397', 'vk6.57242', 'vk6.58467', 'vk6.61868', 'vk6.63003', 'vk6.66869', 'vk6.67737', 'vk6.69493', 'vk6.70215']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U1U3O5O6U5U4U6
R3 orbit {'O1O2O3O4U2U1U3O5O6U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U6O5O6U2U4U3
Gauss code of K* O1O2O3U4U5O4O6O5U2U1U3U6
Gauss code of -K* O1O2O3U1U3O4O5O6U2U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 1 2 -1 2],[ 2 0 0 2 3 0 1],[ 2 0 0 1 2 0 1],[-1 -2 -1 0 1 0 1],[-2 -3 -2 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 -1 -1 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 2 1 -1 -2 -2],[-2 0 2 -1 0 -2 -3],[-2 -2 0 -1 -1 -1 -1],[-1 1 1 0 0 -1 -2],[ 1 0 1 0 0 0 0],[ 2 2 1 1 0 0 0],[ 2 3 1 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,2,2,-2,1,0,2,3,1,1,1,1,0,1,2,0,0,0]
Phi over symmetry [-2,-2,-1,1,2,2,-2,0,2,3,3,0,3,1,2,2,1,2,1,1,0]
Phi of -K [-2,-2,-1,1,2,2,0,1,1,1,3,1,2,2,3,2,3,2,0,0,-2]
Phi of K* [-2,-2,-1,1,2,2,-2,0,2,3,3,0,3,1,2,2,1,2,1,1,0]
Phi of -K* [-2,-2,-1,1,2,2,0,0,1,1,2,0,2,1,3,0,1,0,1,1,-2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+25z+31
Enhanced Jones-Krushkal polynomial 5w^3z^2+25w^2z+31w
Inner characteristic polynomial t^6+27t^4+27t^2+1
Outer characteristic polynomial t^7+45t^5+91t^3+7t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -320*K1**4 + 448*K1**3*K2*K3 - 288*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 1472*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 224*K1**2*K2*K4 + 2744*K1**2*K2 - 1888*K1**2*K3**2 - 64*K1**2*K3*K5 - 4240*K1**2 + 288*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 + 544*K1*K2*K3**3 - 96*K1*K2*K3*K4 - 256*K1*K2*K3*K6 + 6272*K1*K2*K3 - 32*K1*K3**2*K5 + 2392*K1*K3*K4 + 192*K1*K4*K5 + 40*K1*K5*K6 - 144*K2**4 - 992*K2**2*K3**2 - 80*K2**2*K4**2 + 456*K2**2*K4 - 3236*K2**2 - 288*K2*K3**2*K4 + 784*K2*K3*K5 + 160*K2*K4*K6 - 320*K3**4 + 304*K3**2*K6 - 2816*K3**2 - 868*K4**2 - 264*K5**2 - 92*K6**2 + 3802
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice True
Contact