Gauss code |
O1O2O3O4U1U5U6O5O6U3U4U2 |
R3 orbit |
{'O1O2O3O4U1U5U6O5O6U3U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U1U2O5O6U5U6U4 |
Gauss code of K* |
O1O2O3U2U3O4O5O6U1U6U4U5 |
Gauss code of -K* |
O1O2O3U4U5O4O5O6U2U3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 2 -1 1],[ 3 0 3 1 2 3 3],[-1 -3 0 -1 1 -2 0],[ 0 -1 1 0 1 -1 1],[-2 -2 -1 -1 0 -3 -1],[ 1 -3 2 1 3 0 1],[-1 -3 0 -1 1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 -1 -1 -1 -3 -2],[-1 1 0 0 -1 -1 -3],[-1 1 0 0 -1 -2 -3],[ 0 1 1 1 0 -1 -1],[ 1 3 1 2 1 0 -3],[ 3 2 3 3 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,1,1,1,3,2,0,1,1,3,1,2,3,1,1,3] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,2,1,1,3,0,0,1,0,0,0,1,0,0,0] |
Phi of -K |
[-3,-1,0,1,1,2,-1,2,1,1,3,0,0,1,0,0,0,1,0,0,0] |
Phi of K* |
[-2,-1,-1,0,1,3,0,0,1,0,3,0,0,0,1,0,1,1,0,2,-1] |
Phi of -K* |
[-3,-1,0,1,1,2,3,1,3,3,2,1,1,2,3,1,1,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+16z+21 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w |
Inner characteristic polynomial |
t^6+52t^4+89t^2 |
Outer characteristic polynomial |
t^7+68t^5+122t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 4*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-512*K1**6 + 1024*K1**4*K2**3 - 2944*K1**4*K2**2 + 3072*K1**4*K2 - 3104*K1**4 - 128*K1**3*K2**2*K3 + 1088*K1**3*K2*K3 - 352*K1**3*K3 + 1152*K1**2*K2**5 - 5248*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 6592*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 10224*K1**2*K2**2 - 768*K1**2*K2*K4 + 6744*K1**2*K2 - 96*K1**2*K3**2 - 32*K1**2*K4**2 - 1548*K1**2 + 256*K1*K2**5*K3 - 640*K1*K2**4*K3 - 256*K1*K2**4*K5 + 4032*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 2080*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 480*K1*K2**2*K5 - 96*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5280*K1*K2*K3 - 32*K1*K2*K4*K5 + 360*K1*K3*K4 + 88*K1*K4*K5 + 8*K1*K5*K6 - 128*K2**8 + 256*K2**6*K4 - 1600*K2**6 - 128*K2**5*K6 - 192*K2**4*K3**2 - 64*K2**4*K4**2 + 1408*K2**4*K4 - 3296*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 128*K2**3*K6 - 1008*K2**2*K3**2 - 32*K2**2*K3*K7 - 280*K2**2*K4**2 + 2024*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 + 94*K2**2 + 360*K2*K3*K5 + 112*K2*K4*K6 + 8*K2*K5*K7 - 632*K3**2 - 238*K4**2 - 60*K5**2 - 14*K6**2 + 1924 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {2, 3}, {1}]] |
If K is slice |
False |