Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1173

Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,0,0,1,3,4,0,0,1,1,0,0,1,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1173']
Arrow polynomial of the knot is: 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + K3 + K4 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.128', '6.408', '6.452', '6.532', '6.867', '6.917', '6.938', '6.1164', '6.1173', '6.1174']
Outer characteristic polynomial of the knot is: t^7+57t^5+48t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1173']
2-strand cable arrow polynomial of the knot is: 640*K1**2*K2**3 - 1824*K1**2*K2**2 + 32*K1**2*K2*K3*K5 - 256*K1**2*K2*K4 + 2664*K1**2*K2 - 64*K1**2*K3**2 - 64*K1**2*K5**2 - 2888*K1**2 + 160*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 384*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 3096*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 968*K1*K3*K4 + 560*K1*K4*K5 + 112*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 760*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 224*K2**2*K3**2 + 32*K2**2*K4**3 - 424*K2**2*K4**2 - 32*K2**2*K4*K8 + 1816*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 2698*K2**2 - 192*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 968*K2*K3*K5 + 360*K2*K4*K6 + 56*K2*K5*K7 + 8*K2*K6*K8 + 32*K3**2*K6 - 1416*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1044*K4**2 - 544*K5**2 - 78*K6**2 - 8*K7**2 - 2*K8**2 + 2732
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1173']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4236', 'vk6.4315', 'vk6.5507', 'vk6.5625', 'vk6.7616', 'vk6.7703', 'vk6.9105', 'vk6.9184', 'vk6.18373', 'vk6.18711', 'vk6.24826', 'vk6.25283', 'vk6.37014', 'vk6.37462', 'vk6.44187', 'vk6.44506', 'vk6.48548', 'vk6.48603', 'vk6.49251', 'vk6.49367', 'vk6.50341', 'vk6.50398', 'vk6.51078', 'vk6.51109', 'vk6.56146', 'vk6.56373', 'vk6.60671', 'vk6.61018', 'vk6.65810', 'vk6.66062', 'vk6.68807', 'vk6.69015']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5U4O5O6U3U2U6
R3 orbit {'O1O2O3O4U1U5U4O5O6U3U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U2O5O6U1U6U4
Gauss code of K* O1O2O3U2U4O5O6O4U1U6U5U3
Gauss code of -K* O1O2O3U1U4O5O4O6U5U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 2 -1 2],[ 3 0 3 2 1 2 2],[ 0 -3 0 0 1 -1 2],[ 0 -2 0 0 1 -1 1],[-2 -1 -1 -1 0 -2 0],[ 1 -2 1 1 2 0 2],[-2 -2 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 2 0 0 -1 -3],[-2 0 0 -1 -1 -2 -1],[-2 0 0 -1 -2 -2 -2],[ 0 1 1 0 0 -1 -2],[ 0 1 2 0 0 -1 -3],[ 1 2 2 1 1 0 -2],[ 3 1 2 2 3 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,0,1,3,0,1,1,2,1,1,2,2,2,0,1,2,1,3,2]
Phi over symmetry [-3,-1,0,0,2,2,0,0,1,3,4,0,0,1,1,0,0,1,1,1,0]
Phi of -K [-3,-1,0,0,2,2,0,0,1,3,4,0,0,1,1,0,0,1,1,1,0]
Phi of K* [-2,-2,0,0,1,3,0,0,1,1,3,1,1,1,4,0,0,0,0,1,0]
Phi of -K* [-3,-1,0,0,2,2,2,2,3,1,2,1,1,2,2,0,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 7z^2+24z+21
Enhanced Jones-Krushkal polynomial 7w^3z^2+24w^2z+21w
Inner characteristic polynomial t^6+39t^4+24t^2+1
Outer characteristic polynomial t^7+57t^5+48t^3+5t
Flat arrow polynomial 4*K1**2*K2 - 2*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 - 2*K2**2 + K3 + K4 + 2
2-strand cable arrow polynomial 640*K1**2*K2**3 - 1824*K1**2*K2**2 + 32*K1**2*K2*K3*K5 - 256*K1**2*K2*K4 + 2664*K1**2*K2 - 64*K1**2*K3**2 - 64*K1**2*K5**2 - 2888*K1**2 + 160*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 384*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 3096*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 968*K1*K3*K4 + 560*K1*K4*K5 + 112*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 760*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 224*K2**2*K3**2 + 32*K2**2*K4**3 - 424*K2**2*K4**2 - 32*K2**2*K4*K8 + 1816*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 2698*K2**2 - 192*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 968*K2*K3*K5 + 360*K2*K4*K6 + 56*K2*K5*K7 + 8*K2*K6*K8 + 32*K3**2*K6 - 1416*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1044*K4**2 - 544*K5**2 - 78*K6**2 - 8*K7**2 - 2*K8**2 + 2732
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact