Gauss code |
O1O2O3O4U1U5U3O5O6U4U6U2 |
R3 orbit |
{'O1O2O3O4U1U5U3O5O6U4U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U1O5O6U2U6U4 |
Gauss code of K* |
O1O2O3U2U4O5O4O6U1U6U3U5 |
Gauss code of -K* |
O1O2O3U2U4O5O4O6U3U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 1 1 -1 1],[ 3 0 3 1 2 2 1],[-1 -3 0 0 0 -2 1],[-1 -1 0 0 0 -1 1],[-1 -2 0 0 0 -1 1],[ 1 -2 2 1 1 0 1],[-1 -1 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 1 -1 -3],[-1 0 1 0 0 -1 -1],[-1 -1 0 -1 -1 -1 -1],[-1 0 1 0 0 -1 -2],[-1 0 1 0 0 -2 -3],[ 1 1 1 1 2 0 -2],[ 3 1 1 2 3 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,-1,1,3,-1,0,0,1,1,1,1,1,1,0,1,2,2,3,2] |
Phi over symmetry |
[-3,-1,1,1,1,1,0,1,2,3,3,0,1,1,1,0,-1,0,-1,0,1] |
Phi of -K |
[-3,-1,1,1,1,1,0,1,2,3,3,0,1,1,1,0,-1,0,-1,0,1] |
Phi of K* |
[-1,-1,-1,-1,1,3,-1,-1,-1,1,3,0,0,0,1,0,1,2,1,3,0] |
Phi of -K* |
[-3,-1,1,1,1,1,2,1,1,2,3,1,1,1,2,-1,-1,-1,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
Inner characteristic polynomial |
t^6+29t^4+17t^2+1 |
Outer characteristic polynomial |
t^7+43t^5+43t^3+5t |
Flat arrow polynomial |
4*K1**3 - 16*K1**2 - 10*K1*K2 + 2*K1 + 8*K2 + 4*K3 + 9 |
2-strand cable arrow polynomial |
-768*K1**6 - 512*K1**4*K2**2 + 2784*K1**4*K2 - 6432*K1**4 + 800*K1**3*K2*K3 - 1248*K1**3*K3 + 384*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6976*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 13384*K1**2*K2 - 1472*K1**2*K3**2 - 160*K1**2*K3*K5 - 128*K1**2*K4**2 - 7160*K1**2 + 96*K1*K2**3*K3 - 1440*K1*K2**2*K3 - 128*K1*K2**2*K5 - 480*K1*K2*K3*K4 + 10360*K1*K2*K3 + 2864*K1*K3*K4 + 504*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 688*K2**4 - 32*K2**3*K6 - 512*K2**2*K3**2 - 136*K2**2*K4**2 + 1848*K2**2*K4 - 6864*K2**2 + 768*K2*K3*K5 + 112*K2*K4*K6 - 64*K3**4 + 64*K3**2*K6 - 3600*K3**2 - 1388*K4**2 - 320*K5**2 - 40*K6**2 + 7122 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}]] |
If K is slice |
False |