Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1155

Min(phi) over symmetries of the knot is: [-3,0,0,1,1,1,0,1,3,3,3,1,-1,0,1,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1155']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+36t^5+58t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1155']
2-strand cable arrow polynomial of the knot is: 1312*K1**4*K2 - 4192*K1**4 + 384*K1**3*K2*K3 - 1056*K1**3*K3 - 3680*K1**2*K2**2 - 736*K1**2*K2*K4 + 7552*K1**2*K2 - 1248*K1**2*K3**2 - 4104*K1**2 + 64*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 448*K1*K2**2*K3 - 288*K1*K2**2*K5 - 416*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 6328*K1*K2*K3 - 160*K1*K2*K4*K5 + 2368*K1*K3*K4 + 384*K1*K4*K5 + 80*K1*K5*K6 - 64*K2**4 - 224*K2**2*K3**2 - 232*K2**2*K4**2 + 1152*K2**2*K4 - 4142*K2**2 + 680*K2*K3*K5 + 272*K2*K4*K6 - 2312*K3**2 - 1188*K4**2 - 288*K5**2 - 58*K6**2 + 4258
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1155']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11492', 'vk6.11801', 'vk6.12818', 'vk6.13149', 'vk6.17074', 'vk6.17316', 'vk6.20891', 'vk6.21066', 'vk6.22303', 'vk6.22492', 'vk6.23799', 'vk6.28365', 'vk6.31253', 'vk6.31608', 'vk6.32826', 'vk6.35590', 'vk6.36048', 'vk6.40015', 'vk6.40315', 'vk6.42073', 'vk6.43286', 'vk6.46551', 'vk6.46772', 'vk6.48027', 'vk6.52247', 'vk6.53404', 'vk6.57703', 'vk6.57720', 'vk6.58889', 'vk6.59955', 'vk6.64418', 'vk6.69751']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U4U2O5O6U3U6U5
R3 orbit {'O1O2O3O4U1U4U2O5O6U3U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U2O6O5U3U1U4
Gauss code of K* O1O2O3U4U5O6O5O4U1U3U6U2
Gauss code of -K* O1O2O3U2U1O4O5O6U5U3U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 1 1 1],[ 3 0 2 3 1 1 1],[ 0 -2 0 1 0 1 1],[ 0 -3 -1 0 0 2 1],[-1 -1 0 0 0 0 0],[-1 -1 -1 -2 0 0 0],[-1 -1 -1 -1 0 0 0]]
Primitive based matrix [[ 0 1 1 1 0 0 -3],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -1 -2 -1],[ 0 0 1 1 0 1 -2],[ 0 0 1 2 -1 0 -3],[ 3 1 1 1 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,0,3,0,0,0,0,1,0,1,1,1,1,2,1,-1,2,3]
Phi over symmetry [-3,0,0,1,1,1,0,1,3,3,3,1,-1,0,1,0,0,1,0,0,0]
Phi of -K [-3,0,0,1,1,1,0,1,3,3,3,1,-1,0,1,0,0,1,0,0,0]
Phi of K* [-1,-1,-1,0,0,3,0,0,-1,0,3,0,0,0,3,1,1,3,-1,0,1]
Phi of -K* [-3,0,0,1,1,1,2,3,1,1,1,1,0,1,1,0,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 7z^2+28z+29
Enhanced Jones-Krushkal polynomial 7w^3z^2+28w^2z+29w
Inner characteristic polynomial t^6+24t^4+14t^2+1
Outer characteristic polynomial t^7+36t^5+58t^3+5t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial 1312*K1**4*K2 - 4192*K1**4 + 384*K1**3*K2*K3 - 1056*K1**3*K3 - 3680*K1**2*K2**2 - 736*K1**2*K2*K4 + 7552*K1**2*K2 - 1248*K1**2*K3**2 - 4104*K1**2 + 64*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 448*K1*K2**2*K3 - 288*K1*K2**2*K5 - 416*K1*K2*K3*K4 - 160*K1*K2*K3*K6 + 6328*K1*K2*K3 - 160*K1*K2*K4*K5 + 2368*K1*K3*K4 + 384*K1*K4*K5 + 80*K1*K5*K6 - 64*K2**4 - 224*K2**2*K3**2 - 232*K2**2*K4**2 + 1152*K2**2*K4 - 4142*K2**2 + 680*K2*K3*K5 + 272*K2*K4*K6 - 2312*K3**2 - 1188*K4**2 - 288*K5**2 - 58*K6**2 + 4258
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact