Gauss code |
O1O2O3O4U1U3U4O5O6U5U6U2 |
R3 orbit |
{'O1O2O3O4U1U3U4O5O6U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U6O5O6U1U2U4 |
Gauss code of K* |
O1O2O3U4U5O4O5O6U1U6U2U3 |
Gauss code of -K* |
O1O2O3U2U3O4O5O6U4U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 2 -1 1],[ 3 0 3 1 2 0 0],[-1 -3 0 -1 1 -1 1],[ 0 -1 1 0 1 0 0],[-2 -2 -1 -1 0 0 0],[ 1 0 1 0 0 0 1],[-1 0 -1 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -1 0 -2],[-1 0 0 -1 0 -1 0],[-1 1 1 0 -1 -1 -3],[ 0 1 0 1 0 0 -1],[ 1 0 1 1 0 0 0],[ 3 2 0 3 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,1,1,0,2,1,0,1,0,1,1,3,0,1,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,1,0,3,2,0,1,1,0,0,1,1,-1,0,1] |
Phi of -K |
[-3,-1,0,1,1,2,2,2,1,4,3,1,1,1,3,0,1,1,-1,0,1] |
Phi of K* |
[-2,-1,-1,0,1,3,0,1,1,3,3,1,0,1,1,1,1,4,1,2,2] |
Phi of -K* |
[-3,-1,0,1,1,2,0,1,0,3,2,0,1,1,0,0,1,1,-1,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+20t^4+29t^2 |
Outer characteristic polynomial |
t^7+36t^5+66t^3+9t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 4*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-1408*K1**4*K2**2 + 2752*K1**4*K2 - 4160*K1**4 - 384*K1**3*K2**2*K3 + 2112*K1**3*K2*K3 - 1056*K1**3*K3 + 384*K1**2*K2**5 - 2944*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 5408*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 1088*K1**2*K2**2*K4 - 13328*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 128*K1**2*K2*K3*K5 - 1472*K1**2*K2*K4 + 9288*K1**2*K2 - 928*K1**2*K3**2 - 32*K1**2*K3*K5 - 2324*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 4704*K1*K2**3*K3 + 416*K1*K2**2*K3*K4 - 2400*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 1088*K1*K2**2*K5 + 64*K1*K2*K3**3 - 512*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7984*K1*K2*K3 - 32*K1*K2*K4*K5 + 680*K1*K3*K4 + 56*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1472*K2**6 - 576*K2**4*K3**2 - 192*K2**4*K4**2 + 1664*K2**4*K4 - 4192*K2**4 + 416*K2**3*K3*K5 + 64*K2**3*K4*K6 - 256*K2**3*K6 + 64*K2**2*K3**2*K4 - 1552*K2**2*K3**2 - 32*K2**2*K3*K7 - 376*K2**2*K4**2 + 2600*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 378*K2**2 + 624*K2*K3*K5 + 104*K2*K4*K6 + 8*K3**2*K6 - 1000*K3**2 - 238*K4**2 - 36*K5**2 - 14*K6**2 + 2564 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {2, 3}, {1}], [{6}, {1, 5}, {4}, {2, 3}]] |
If K is slice |
False |