Gauss code |
O1O2O3O4U1U3U4O5O6U5U2U6 |
R3 orbit |
{'O1O2O3O4U1U3U4O5O6U5U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U3U6O5O6U1U2U4 |
Gauss code of K* |
O1O2O3U4U5O4O6O5U1U6U2U3 |
Gauss code of -K* |
O1O2O3U1U3O4O5O6U4U5U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 0 2 -1 2],[ 3 0 3 1 2 0 1],[ 0 -3 0 -1 1 0 2],[ 0 -1 1 0 1 0 0],[-2 -2 -1 -1 0 0 0],[ 1 0 0 0 0 0 1],[-2 -1 -2 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 0 0 -2 -1 -1],[-2 0 0 -1 -1 0 -2],[ 0 0 1 0 1 0 -1],[ 0 2 1 -1 0 0 -3],[ 1 1 0 0 0 0 0],[ 3 1 2 1 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,1,3,0,0,2,1,1,1,1,0,2,-1,0,1,0,3,0] |
Phi over symmetry |
[-3,-1,0,0,2,2,0,1,3,1,2,0,0,1,0,1,0,1,2,1,0] |
Phi of -K |
[-3,-1,0,0,2,2,2,0,2,3,4,1,1,3,2,1,1,0,1,2,0] |
Phi of K* |
[-2,-2,0,0,1,3,0,0,2,2,4,1,1,3,3,-1,1,0,1,2,2] |
Phi of -K* |
[-3,-1,0,0,2,2,0,1,3,1,2,0,0,1,0,1,0,1,2,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
11z+23 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+15w^2z+23w |
Inner characteristic polynomial |
t^6+23t^4+40t^2 |
Outer characteristic polynomial |
t^7+41t^5+112t^3 |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 8*K1**2 - 2*K1*K2 - 4*K1*K3 - 2*K1 + 4*K2 + K4 + 4 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 224*K1**4*K2 - 864*K1**4 + 128*K1**3*K2**3*K3 + 320*K1**3*K2*K3 - 384*K1**2*K2**4 + 288*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 - 2208*K1**2*K2**2 + 2200*K1**2*K2 - 320*K1**2*K3**2 - 32*K1**2*K4**2 - 1664*K1**2 + 960*K1*K2**3*K3 + 96*K1*K2*K3**3 + 2944*K1*K2*K3 + 368*K1*K3*K4 + 64*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 816*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 1008*K2**2*K3**2 - 136*K2**2*K4**2 + 416*K2**2*K4 - 48*K2**2*K5**2 - 48*K2**2*K6**2 - 1116*K2**2 + 440*K2*K3*K5 + 120*K2*K4*K6 + 8*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 48*K3**2*K6 - 1100*K3**2 - 296*K4**2 - 100*K5**2 - 68*K6**2 - 2*K8**2 + 1832 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {3, 5}, {4}, {1, 2}]] |
If K is slice |
False |