Gauss code |
O1O2O3O4U1U3U4O5O6U2U5U6 |
R3 orbit |
{'O1O2O3O4U1U3U4O5O6U2U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U3O5O6U1U2U4 |
Gauss code of K* |
O1O2O3U4U5O6O4O5U1U6U2U3 |
Gauss code of -K* |
O1O2O3U1U2O4O5O6U4U5U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 0 2 0 2],[ 3 0 3 1 2 1 1],[ 1 -3 0 -1 1 1 2],[ 0 -1 1 0 1 0 0],[-2 -2 -1 -1 0 0 0],[ 0 -1 -1 0 0 0 1],[-2 -1 -2 0 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 0 0 -1 -1 -2],[-2 0 0 -1 0 -2 -1],[ 0 0 1 0 0 -1 -1],[ 0 1 0 0 0 1 -1],[ 1 1 2 1 -1 0 -3],[ 3 2 1 1 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,1,3,0,0,1,1,2,1,0,2,1,0,1,1,-1,1,3] |
Phi over symmetry |
[-3,-1,0,0,2,2,-1,2,2,3,4,0,2,2,1,0,2,1,1,2,0] |
Phi of -K |
[-3,-1,0,0,2,2,-1,2,2,3,4,0,2,2,1,0,2,1,1,2,0] |
Phi of K* |
[-2,-2,0,0,1,3,0,1,2,1,4,2,1,2,3,0,0,2,2,2,-1] |
Phi of -K* |
[-3,-1,0,0,2,2,3,1,1,1,2,-1,1,2,1,0,0,1,1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial |
t^6+25t^4+42t^2+1 |
Outer characteristic polynomial |
t^7+43t^5+132t^3+9t |
Flat arrow polynomial |
12*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 4*K1*K3 - 6*K1 + 4*K2 + K4 + 4 |
2-strand cable arrow polynomial |
-64*K1**4*K2**2 + 64*K1**4*K2 - 608*K1**4 + 256*K1**3*K2*K3 - 224*K1**3*K3 - 1920*K1**2*K2**4 + 3040*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 7888*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 352*K1**2*K2*K4 + 6792*K1**2*K2 - 288*K1**2*K3**2 - 4672*K1**2 + 640*K1*K2**5*K3 - 256*K1*K2**4*K3 - 256*K1*K2**4*K5 + 4544*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2080*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 512*K1*K2**2*K5 + 128*K1*K2*K3**3 - 416*K1*K2*K3*K4 + 7000*K1*K2*K3 - 96*K1*K2*K4*K5 + 736*K1*K3*K4 + 120*K1*K4*K5 + 16*K1*K5*K6 - 608*K2**6 - 768*K2**4*K3**2 - 32*K2**4*K4**2 + 512*K2**4*K4 - 3904*K2**4 + 512*K2**3*K3*K5 + 64*K2**3*K4*K6 + 64*K2**2*K3**2*K4 - 2608*K2**2*K3**2 - 64*K2**2*K3*K7 - 264*K2**2*K4**2 - 32*K2**2*K4*K8 + 2456*K2**2*K4 - 128*K2**2*K5**2 - 16*K2**2*K6**2 - 1360*K2**2 - 128*K2*K3**2*K4 + 1056*K2*K3*K5 + 136*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 32*K3**2*K6 - 1796*K3**2 - 468*K4**2 - 148*K5**2 - 24*K6**2 - 2*K8**2 + 3524 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}], [{6}, {3, 5}, {4}, {1, 2}]] |
If K is slice |
False |