Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,1,2,2,0,1,0,1,1,0,1,-1,-1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1142'] |
Arrow polynomial of the knot is: -8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.950', '6.1142'] |
Outer characteristic polynomial of the knot is: t^7+60t^5+75t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1142'] |
2-strand cable arrow polynomial of the knot is: -464*K1**4 - 768*K1**2*K2**6 + 896*K1**2*K2**5 - 2880*K1**2*K2**4 + 3968*K1**2*K2**3 - 7280*K1**2*K2**2 - 96*K1**2*K2*K4 + 5624*K1**2*K2 - 48*K1**2*K3**2 - 3540*K1**2 + 1152*K1*K2**5*K3 - 640*K1*K2**4*K3 - 256*K1*K2**4*K5 + 3584*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1792*K1*K2**2*K3 - 288*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4872*K1*K2*K3 + 296*K1*K3*K4 - 128*K2**8 + 256*K2**6*K4 - 1440*K2**6 - 128*K2**5*K6 - 320*K2**4*K3**2 - 64*K2**4*K4**2 + 1184*K2**4*K4 - 3216*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 1408*K2**2*K3**2 - 200*K2**2*K4**2 + 1880*K2**2*K4 - 8*K2**2*K6**2 - 460*K2**2 - 32*K2*K3**2*K4 + 328*K2*K3*K5 + 80*K2*K4*K6 + 8*K3**2*K6 - 1060*K3**2 - 218*K4**2 - 16*K5**2 - 12*K6**2 + 2504 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1142'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11415', 'vk6.11700', 'vk6.12715', 'vk6.13070', 'vk6.20266', 'vk6.21583', 'vk6.27528', 'vk6.29104', 'vk6.31152', 'vk6.31483', 'vk6.32304', 'vk6.32743', 'vk6.38929', 'vk6.41149', 'vk6.45686', 'vk6.47405', 'vk6.52170', 'vk6.52403', 'vk6.52989', 'vk6.53314', 'vk6.57091', 'vk6.58254', 'vk6.61661', 'vk6.62829', 'vk6.63744', 'vk6.63846', 'vk6.64164', 'vk6.64358', 'vk6.66730', 'vk6.67599', 'vk6.69378', 'vk6.70114'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U2U5O6O5U3U4U6 |
R3 orbit | {'O1O2O3O4U1U2U5O6O5U3U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U1U2O6O5U6U3U4 |
Gauss code of K* | O1O2O3U4U3O5O6O4U1U2U5U6 |
Gauss code of -K* | O1O2O3U4U1O4O5O6U2U3U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 0 2 1 1],[ 3 0 1 2 3 3 2],[ 1 -1 0 1 2 1 2],[ 0 -2 -1 0 1 0 1],[-2 -3 -2 -1 0 -2 0],[-1 -3 -1 0 2 0 1],[-1 -2 -2 -1 0 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -1 -2 -3],[-1 0 0 -1 -1 -2 -2],[-1 2 1 0 0 -1 -3],[ 0 1 1 0 0 -1 -2],[ 1 2 2 1 1 0 -1],[ 3 3 2 3 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,0,1,3,0,2,1,2,3,1,1,2,2,0,1,3,1,2,1] |
Phi over symmetry | [-3,-1,0,1,1,2,1,1,1,2,2,0,1,0,1,1,0,1,-1,-1,1] |
Phi of -K | [-3,-1,0,1,1,2,1,1,1,2,2,0,1,0,1,1,0,1,-1,-1,1] |
Phi of K* | [-2,-1,-1,0,1,3,-1,1,1,1,2,1,1,1,1,0,0,2,0,1,1] |
Phi of -K* | [-3,-1,0,1,1,2,1,2,2,3,3,1,2,1,2,1,0,1,-1,0,2] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+8w^3z^2-4w^3z+21w^2z+19w |
Inner characteristic polynomial | t^6+44t^4+26t^2+1 |
Outer characteristic polynomial | t^7+60t^5+75t^3+8t |
Flat arrow polynomial | -8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + K2 + 2 |
2-strand cable arrow polynomial | -464*K1**4 - 768*K1**2*K2**6 + 896*K1**2*K2**5 - 2880*K1**2*K2**4 + 3968*K1**2*K2**3 - 7280*K1**2*K2**2 - 96*K1**2*K2*K4 + 5624*K1**2*K2 - 48*K1**2*K3**2 - 3540*K1**2 + 1152*K1*K2**5*K3 - 640*K1*K2**4*K3 - 256*K1*K2**4*K5 + 3584*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1792*K1*K2**2*K3 - 288*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4872*K1*K2*K3 + 296*K1*K3*K4 - 128*K2**8 + 256*K2**6*K4 - 1440*K2**6 - 128*K2**5*K6 - 320*K2**4*K3**2 - 64*K2**4*K4**2 + 1184*K2**4*K4 - 3216*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 1408*K2**2*K3**2 - 200*K2**2*K4**2 + 1880*K2**2*K4 - 8*K2**2*K6**2 - 460*K2**2 - 32*K2*K3**2*K4 + 328*K2*K3*K5 + 80*K2*K4*K6 + 8*K3**2*K6 - 1060*K3**2 - 218*K4**2 - 16*K5**2 - 12*K6**2 + 2504 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |